Виды газовых турбин. Принцип работы гту. Вспомогательная силовая установка

Виды газовых турбин. Принцип работы гту. Вспомогательная силовая установка

22.06.2022

Газовая турбина - это двигатель, в котором в процессе непрерывной работы основной орган устройства (ротор) превращает (в других случаях пара или воды) в работу механического плана. При этом струя рабочего вещества воздействует на закрепленные по окружности ротора лопатки, приводя их в движение. По направлению газового потока турбины делятся на осевые (газ перемещается параллельно оси турбины) или радиальные (перпендикулярное движение относительно той же оси). Существуют как одно- , так и многоступенчатые механизмы.

Газовая турбина может действовать на лопатки двумя способами. Во-первых, это активный процесс, когда газ подается в рабочую зону на высоких скоростях. При этом газовый поток стремится перемещаться прямолинейно, а стоящая на его пути изогнутая лопаточная деталь отклоняет его, поворачиваясь сама. Во-вторых, это процесс реактивного типа, когда скорость подачи газа невелика, однако при этом используются высокие давления. типа в чистом виде почти не встречается, т. к. в их турбинах присутствует которая действует на лопатки вместе с силой реакции.

Где сегодня применяется газовая турбина? Принцип работы устройства позволяет использовать его для приводов генераторов электротока, компрессоров и др. Широкое распространение турбины такого вида получили на транспорте (судовые газотурбинные установки). По сравнению с паровыми аналогами они имеют сравнительно небольшой вес и габариты, для них не нужно обустройство котельной, конденсационной установки.

Газовая турбина достаточно быстро готова к работе после запуска, развивает полную мощность приблизительно за 10 минут, проста в обслуживании, требует небольшого количества воды для охлаждения. В отличие от двигателей внутреннего сгорания, она не имеет инерционных воздействий от кривошипно-шатунного механизма. в полтора раза короче, чем дизельные двигатели и более чем в два раза легче. У устройств есть возможность работать на топливе низкого качества. Вышеуказанные качества позволяют считать двигатели такого плана представляющими особый интерес для судов на и на подводных крыльях.

Газовая турбина как основной компонент двигателя имеет и ряд существенных недостатков. В их числе отмечают высокую шумность, меньшую, чем у дизелей, экономичность, небольшой срок работы при высоких температурах (если используемая газовая среда имеет температуру около 1100 о С, то сроки использования турбины могут составлять в среднем до 750 часов).

КПД газовой турбины зависит от того, в какой системе она используется. Например, устройства, применяемые в энергетике с начальной температурой газов выше 1300 градусов Цельсия, со воздуха в компрессоре не более 23 и не менее 17 имеют при автономных операциях коэффициент около 38,5%. Такие турбины не очень широко распространены и применяются в основном для перекрытия нагрузочных пиков в электросистемах. Сегодня около 15 газовых турбин с мощностью до 30 МВт работают на ряде теплоэлектростанций России. На многоступенчатых установках достигается гораздо более высокий показатель полезного действия (около 0,93) за счет высокой эффективности конструктивных элементов.


Рис. 6. Регенеративный цикл, одновальная

ГТУ : 1 - регенератор; 2 - компрессор; 3 - камера сгорания;

4 - турбина; 5 - нагнетатель (нагрузка)

В одновальной ГТУ открытого простого цикла (рис. 5) рабочее тело (воздух) поступает в компрессор 1 из атмосферы, сжимается и направляется в камеру сгорания 2, в которой происходит его нагревание до определенной температуры. Затем рабочее тело (воздух) поступает в турбину 3 , где расширяется, производя работу, и выбрасывается в атмосферу. Особенностью этого цикла является то, что компрессор, турбина и центробежный нагнетатель 4 (нагрузка) соединены механически. Центробежный нагнетатель с приводом от одновальной ГТУ может работать только в сравнительно узком диапазоне расходов газа.

В открытом цикле рабочее тело (воздух) поступает в ГТУ из атмосферы и выбрасывается в атмосферу. В замнутом цикле рециркуляция рабочего тела (воздуха) осуществляется без связи с атмосферой.

В одновальной ГТУ регенеративного цикла (рис. 6) дополнительно применен регенератор - теплообменник, передающий тепло от выхлопных газов рабочему телу (воздуху) до его поступления в камеру сгорания. Регенеративный цикл - термодинамический цикл с использованием тепла отработавшего рабочего тела. Состоит он из следующих друг за другом сжатия, регенеративного подогрева, горения, расширения и регенеративного охлаждения рабочего тела (теплопередачи от отработавшего газа к рабочему телу за компрессором). В целях расширения диапазона регулирования и устойчивой работы применяют схему многовальной ГТУ или с разрезным валом (рис. 7) . Такая ГТУ имеет по крайней мере две турбины, камеру сгорания 2 , работающие на независимых валах. Компрессор 1 приводится турбиной высокого давления (ТВД) 3 , а силовая турбина (турбина низкого давления или ТНД) 4 обеспечивает привод нагнетателя 5 (нагрузки). Газотурбинная установка с разрезным валом обеспечивает любой режим работы газопровода без понижения давления нагнетания, так как, изменяя скорость вращения силового вала ТНД, можно привести в соответствие мощность, потребляемую нагнетателем, с полезной мощностью установки.

В ГТУ регенеративного цикла с разрезным валом появляется дополнительный элемент - регенератор, который выполняет те же функции, что регенератор одновальной ГТУ (см. рис. 6) .

Рабочий процесс в многовальной ГТУ со ступенчатым сжатием и ступенчатым сгоранием топлива отличается от рабочего процесса других ГТУ тем, что воздух сжимается с промежуточным охлаждением, а горение происходит в двух камерах сгорания, расположенных перед каждой турбиной (рис. 8) . При одинаковой производительности и степени сжатия в установке с промежуточным охлаждением затраты работы на сжатие в компрессорах низкого и высокого давлений (КНД и КВД) меньше, чем в установке без охлаждения. Применение ступенчатого сгорания приводит к некоторому повышению к л.д. установки. Но в такой установке усложняются топливная и масляная системы, создается более развернутая сеть воздуха и газопроводов, что увеличивает габариты и массу установки. Поэтому на КС не нашли практическое применение схемы ГТУ со ступенчатым сгоранием. Используют в основном ГТУ , выполненные по простому регенеративному (например, ГТК-10) или безрегенеративному циклу (например, ГТН-16) с разрезным валом.


Рис. 7. Простой цикл, ГТУ с разрезным валом с отдельной силовой турбиной

Рис. 8. Цикл с промежуточным охлаждением и промежуточным подогревом, многовальная ГТУ с потребителем полезной мощности на валу низкого давления: 1 - камера сгорания; 2 - промежуточный холодильник; 3 - камера сгорания промежуточного подогрева; 4 - нагнетатель (нагрузка)

Принцип действия газотурбинных установок

Рис.1. Схема ГТУ с одновальным ГТД простого цикла

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо - газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Газовые турбины описываются термодинамическим циклом Брайтона Цикл Брайтона/Джоуля - термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.

Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.

Иногда этот цикл называют также циклом Джоуля - в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.

Рис.2. P,V диаграмма цикла Брайтона

Идеальный цикл Брайтона состоит из процессов:

  • 1-2 Изоэнтропическое сжатие.
  • 2-3 Изобарический подвод теплоты.
  • 3-4 Изоэнтропическое расширение.
  • 4-1 Изобарический отвод теплоты.

С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1-2p-3-4p-1 на T-S диаграмме)(рис.3)

Рис.3. T-S диаграмма цикла Брайтона
Идеального (1-2-3-4-1)
Реального (1-2p-3-4p-1)

Термический КПД идеального цикла Брайтона принято выражать формулой:

  • где П = p2 / p1 - степень повышения давления в процессе изоэнтропийного сжатия (1-2);
  • k - показатель адиабаты (для воздуха равный 1,4)

Следует особо отметить, что этот общепринятый способ вычисления КПД цикла затемняет суть происходящего процесса. Предельный КПД термодинамического цикла вычисляется через отношение температур по формуле Карно:

  • где T1 - температура холодильника;
  • T2 - температура нагревателя.

Ровно это же отношение температур можно выразить через величину применяемых в цикле отношений давлений и показатель адиабаты:

Таким образом КПД цикла Брайтона, зависит от начальной и конечной температур цикла ровно так же, как и КПД цикла Карно. При бесконечно малой величине нагрева рабочего тела по линии (2-3) процесс можно считать изотермическим и полностью эквивалентным циклу Карно. Величина нагрева рабочего тела T3 при изобарическом процессе определяет величину работы отнесённую к количеству использованного в цикле рабочего тела, но ни каким образом не влияет на термический КПД цикла. Однако при практической реализации цикла нагрев обычно производится до возможно больших величин ограниченных жаростойкостью применяемых материалов с целью минимизировать размеры механизмов осуществляющих сжатие и расширение рабочего тела.

На практике, трение и турбулентность вызывают:

  • Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  • Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  • Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую.

Рекуператоры - это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал/компрессор/турбина/альтернативный ротор в сборе (см. изображение ниже), не учитывая топливную систему.

Рис.4. Эта машина имеет одноступенчатый радиальный компрессор,
турбину, рекуператор, и воздушные подшипники.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.

Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.



Тепловая турбина постоянного действия, в которой тепловая энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую вращательную работу на валу ; является конструктивным элементом газотурбинного двигателя.

Нагревание сжатого газа, как правило, происходит в камере сгорания. Также можно осуществлять нагрев в ядер-ном реакторе и др. Впервые газовые турбины появились в конце XIX в. в качестве газотурбинного двигателя и по конструктивному выполнению приближались к паровой турбине. Газовая турбина конструктивно представляет собой целый ряд упорядоченно расположенных неподвижных лопаточных венцов аппарата сопла и вращающихся венцов рабочего колеса, которые в результате образуют проточную часть. Ступень турбины представляет собой сопловой аппарат, совмещенный с рабочим колесом . Ступень состоит из статора, в который входят стационарные детали (корпус, сопловые лопатки, бандажные кольца), и ротора , представляющего собой совокупность вращающихся частей (таких, как рабочие лопатки, диски, вал).

Классификация газовой турбины осуществляется по многим конструктивным особенностям: по направлению газового потока, количеству ступеней, способу использования перепада тепла и способу подвода газа к рабочему колесу. По направлению газового потока можно различить газовые турбины осевые (самые распространенные) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах поток в меридиональном сечении транспортируется в основном вдоль всей оси турбины; в радиальных турбинах, наоборот, перпендикулярно оси. Радиальные турбины подразделяются на центростремительные и центробежные. В диагональной турбине газ течет под некоторым углом к оси вращения турбины. У рабочего колеса тангенциальной турбины отсутствуют лопатки, такие турбины применяются при очень малом расходе газа, обычно в измерительных приборах. Газовые турбины бывают одно-, двух- и многоступенчатые.

Количество ступеней определяется многими факторами: назначением турбины, ее конструктивной схемой, общей мощностью и развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого перепада тепла различают турбины со ступенями скорости, у которых в рабочем колесе происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в них давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). В парциальных газовых турбинах подвод газа к рабочему колесу происходит по части окружности соплового аппарата или по его полной окружности.

В многоступенчатой турбине процесс преобразования энергии состоит из целого ряда последовательных процессов в отдельных ступенях. В межлопаточные каналы соплового аппарата подается сжатый и подогретый газ с начальной скоростью, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию струи вытекания. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходят в межлопаточных каналах рабочего колеса. Газовый поток, воздействуя на рабочие лопатки, создает крутящий момент на главном валу турбины. При этом происходит уменьшение абсолютной скорости газа. Чем ниже эта скорость, тем большая часть энергии газа преобразовалась в механическую работу на валу турбины.

КПД характеризует эффективность газовых турбин, представляющую собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный КПД современных многоступенчатых турбин довольно высок и достигает 92-94%.

Принцип работы газовой турбины состоит в следующем: газ нагнетается в камеру сгорания компрессором , перемешивается с воздухом, формирует топливную смесь и поджигается. Образовавшиеся продукты горения с высокой температурой (900-1200 °С) проходят через несколько рядов лопаток, установленных на валу турбины, и приводят к вращению турбины. Полученная механическая энергия вала передается через редуктор генератору , вырабатывающему электричество.

Тепловая энергия выходящих из турбины газов попадает в теплоутилизатор. Также вместо производства электричества механическая энергия турбины может быть использована для работы различных насосов , компрессоров и т. п. Наиболее часто используемым видом топлива для газовых турбин является природный газ, хотя это не может исключить возможности использования других видов газообразного топлива. Но при этом газовые турбины очень капризны и предъявляют повышенные требования к качеству его подготовки (необходимы определенные механические включения, влажность).

Температура исходящих из турбины газов составляет 450-550 °С. Количественное соотношение тепловой энергии к электрической у газовых турбин составляет от 1,5: 1 до 2,5: 1, что позволяет строить когенерационные системы, различающиеся по типу теплоносителя:

1) непосредственное (прямое) использование отходящих горячих газов;
2) производство пара низкого или среднего давления (8-18 кг/см2) во внешнем котле;
3) производство горячей воды (лучше, когда требуемая температура превышает 140 °С);
4) производство пара высокого давления.

Большой вклад в развитие газовых турбин внесли советские ученые Б. С. Стечкин, Г. С. Жирицкий, Н. Р. Брилинг, В. В. Уваров, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании газовых турбин для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарские «Броун-Бовери», в которой работал известный словацкий ученый А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).

В дальнейшем развитие газовых турбин зависит от возможности повышения температуры газа перед турбиной. Это связано с созданием новых жаропрочных материалов и надежных систем охлаждения рабочих лопаток при значительном усовершенствовании проточной части и др.

Благодаря повсеместному переходу в 1990-е гг. на использование природного газа в качестве основного топлива для электроэнергетики газовые турбины заняли существенный сегмент рынка. Несмотря на то что максимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые производители выпускают модели в диапазоне 1-5 МВт.

Применяются газовые турбины в авиации и на электростанциях.

  • Предыдущее: ГАЗОАНАЛИЗАТОР
  • Следующее: ГАЗОВЫЙ ДВИГАТЕЛЬ
Категория:

То и дело в новостях говорят, что, к примеру, на такой то ГРЭС полным ходом идет строительство ПГУ -400 МВт, а на другой ТЭЦ-2 включена в работу установка ГТУ-столько то МВт. О таких событиях пишут, их освещают, поскольку включение таких мощных и эффективных агрегатов — это не только «галочка» в выполнении государственной программы, но и реальное повышение эффективности работы электростанций, областной энергосистемы и даже объединенной энергосистемы.

Но довести до сведения хочется не о выполнении госпрограмм или прогнозных показателей, а именно о ПГУ и ГТУ. В этих двух терминах может запутаться не только обыватель, но и начинающий энергетик.

Начнем с того, что проще.

ГТУ — газотурбинная установка — это газовая турбина и электрический генератор, объединенные в одном корпусе. Ее выгодно устанавливать на ТЭЦ. Это эффективно, и многие реконструкции ТЭЦ направлены на установку именно таких турбин.

Вот упрощенный цикл работы тепловой станции:

Газ (топливо) поступает в котел, где сгорает и передает тепло воде, которая выходит из котла в виде пара и крутит паровую турбину. А паровая турбина крутит генератор. Из генератора мы получаем электроэнергию, а пар для промышленных нужд (отопление, подогрев) забираем из турбины при необходимости.

А в газотурбиной установке газ сгорает и крутит газовую турбину, которая вырабатывают электроэнергию, а выходящие газы превращают воду в пар в котле-утилизаторе, т.е. газ работает с двойной пользой: сначала сгорает и крутит турбину, затем нагревает воду в котле.

А если саму газотурбинную установку показать еще более развернуто, то будет выглядеть так:

На этом видео наглядно показано какие процессы происходят в газотурбинной установке.

Но еще больше пользы будет в том случае, если и полученный пар заставить работать — пустить его в паровую турбину, чтобы работал еще один генератор! Вот тогда наша ГТУ станет ПАРО-ГАЗОВОЙ УСАНОВКОЙ (ПГУ).

В итоге ПГУ — это более широкое понятие. Эта установка – самостоятельный энергоблок, где топливо используется один раз, а электроэнергия вырабатывается дважды: в газотурбинной установке и в паровой турбине. Этот цикл очень эффективный, и имеет КПД порядка 57 %! Это очень хороший результат, который позволяет значительно снизить расход топлива на получение киловатт-часа электроэнергии!

В Беларуси для повышения эффективности работы электростанций применяют ГТУ как «надстройку» к существующей схеме ТЭЦ, а ПГУ возводят на ГРЭСах, как самостоятельные энергоблоки. Работая на электростанциях, эти газовые турбины не только повышают «прогнозные технико-экономические показатели», но и улучшают управление генерацией, так как имеют высокую маневренность: быстроту пуска и набора мощности.

Вот какие полезные эти газовые турбины!

© 2024 diskont-tehnika.ru - Ваша идеальная кухня