Крахмал фармакопея описание. Физико-химические свойства крахмала. Как работает в человеческом организме

Крахмал фармакопея описание. Физико-химические свойства крахмала. Как работает в человеческом организме

07.07.2022

Крахмал (C 6 H 10 O 5) n - аморфный порошок белого цвета, без вкуса и запаха, плохо растворим в воде, в горячей воде образует коллоидный раствор (клейстер). Макромолекулы крахмала построены из большого числа остатков α-глюкозы. Крахмал состоит из двух фракций: амилозы и амилопектина. Амилоза имеет линейные молекулы, амилопектин – разветвлённые.

Биологическая роль.

Крахмал – один из продуктов фотосинтеза, главное питательное запасное вещество растений. Крахмал – основной углевод в пище человека.

Получение.

Крахмал получают чаще всего из картофеля. Для этого картофель измельчают, промывают водой и перекачивают в большие сосуды, где происходит отстаивание. Полученный крахмал ещё раз промывают водой, отстаивают и сушат в струе теплого воздуха.

Химические свойства.

1. С иодом крахмал даёт фиолетовое окрашивание.

2. Крахмал – многоатомный спирт.

3. Крахмал сравнительно легко подвергается гидролизу в кислой среде и под действием ферментов:

(C 6 H 10 O 5)n + nH 2 O → nC 6 H 12 O 6

крахмал глюкоза

В зависимости от условий гидролиз крахмала может протекать ступенчато, с образованием различных промежуточных продуктов:

(С 6 H 10 O 5)n → (C 6 H 10 0 5) x → (C 6 H 10 0 5) y → C 12 H 22 O 11 → nC 6 H 12 O 6

крахмал растворимый декстрины мальтоза глюкоза крахмал

Происходит постепенное расщепление макромолекул.

Применение крахмала.

Крахмал применяется в кондитерском производстве (получение глюкозы и патоки), является сырьём для производства этилового, н -бутилового спиртов, ацетона, лимонной кислоты, глицерина и так далее. Он используется в медицине в качестве наполнителей (в мазях и присыпках), как клеящее вещество.

Крахмал является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, то есть картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала и образуются декстрины , растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала, – (C 6 H 10 O 5) n , но его молекулы более разветвлённые.

Крахмал как питательное вещество.

1. Крахмал является основным углеводом нашей пищи, но он не может самостоятельно усваиваться организмом.

2. Подобно жирам, крахмал сначала подвергается гидролизу.

3. Этот процесс начинается уже при пережевывании пищи во рту под действием фермента, содержащегося в слюне.

5. Образующаяся глюкоза всасывается через стенки кишечника в кровь и поступает в печень, а оттуда – во все ткани организма.

6. Избыток глюкозы отлагается в печени в виде высокомолекулярного углевода – гликогена.

Особенности гликогена: а) по строению гликоген отличается от крахмала большей разветвленностью своих молекул; б) этот запасный гликоген между приемами пищи снова превращается в глюкозу по мере расходования ее в клетках организма.

7. Промежуточные продукты гидролиза крахмала (декстрины) легче усваиваются организмом, чем сам крахмал, так как состоят из меньших по размерам молекул и лучше растворяются в воде.

8. Приготовление пищи часто связано именно с превращением крахмала в декстрины.

Применение крахмала и получение его из крахмалсодержащих продуктов.

1. Крахмал используется не только как продукт питания.

2. В пищевой промышленности из него готовят глюкозу и патоку.

3. Для получения глюкозы крахмал нагревают с разбавленной серной кислотой в течение нескольких часов.

4. Когда процесс гидролиза закончится, кислоту нейтрализуют мелом, образующийся осадок сульфата кальция отфильтровывается и раствор упаривается.

5. Если процесс гидролиза не доводить до конца, то в результате получается густая сладкая масса – смесь декстринов и глюкозы – патока.

Особенности патоки: а) она применяется в кондитерском деле для приготовления некоторых сортов конфет, мармелада, пряников и т. п.; б) с патокой кондитерские изделия не кажутся приторно-сладкими, как приготовленные на чистом сахаре, и долго остаются мягкими.

6. Декстрины, получаемые из крахмала, используются в качестве клея. Крахмал применяется для крахмаления белья: под действием нагревания горячим утюгом он превращается в декстрины, которые склеивают волокна ткани и образуют плотную пленку, предохраняющую ткань от быстрого загрязнения.

7. Крахмал получается чаще всего из картофеля. Картофель моется, затем измельчается на механических терках, измельченная масса промывается на ситах водой.

8. Освободившиеся из клеток клубня мелкие зерна крахмала проходят с водой через сито и оседают на дне чана. Крахмал тщательно промывается, отделяется от воды и сушится.



Введение

Общие сведения о крахмале

Строение крахмала

2.1 Амилоза и амилопектин

2.2 Образование и структура крахмальных зерен

2.3 Виды крахмальных зерен

Классификация крахмала

Физико-химические свойства

Получение

Применение

6.1 В различных видах промышленности

6.2 В фармацевтической химии

6.3 В медицине

6.4 В фармацевтической технологии

Заключение

Список литературы

Введение

Крахмал - главнейший представитель природных углеводов, синтезирующийся в растениях и являющийся основным источником энергии для человеческого организма.

С давних времен крахмал находит широкое применение в медицинской сфере. Во врачебной практике он применяется как обволакивающее средство при воспалительных и язвенных поражениях слизистой оболочки желудка и кишечника. В аналитической и фармацевтической химии это основной индикатор на йод. В фармацевтической технологии крахмал используется как наполнитель, связывающее, опудривающее средство.

Целью курсовой работы является изучение строения крахмала, его физико-химических свойств, получения и применения в различных сферах жизни, в том числе в медицине и фармации.

В нашей стране единственным научным центром крахмалопаточной промышленности России является Всероссийский научно-исследовательский институт крахмалопродуктов (ВНИИК) в Московской области. Основная задача института - разработка новейших технологий получения крахмала из картофеля и зернового сырья (кукурузы, пшеницы, сорго, ржи, ячменя и т.д.), модифицированных крахмалов, патоки, глюкозы, глюкозно-фруктозного сиропа, безбелковых диетических продуктов, а также конструирование оборудования для крахмалопаточной промышленности. ВНИИ крахмалопродуктов проводит весь комплекс работ от научных исследований до освоения производства.

1. Общие сведения о крахмале

Полисахариды - это полимеры углеводов, состоящие из множества (от десятков до нескольких тысяч) моносахаридных звеньев. Многие полисахариды содержат молекулу глюкозы в качестве мономера. Они синтезируются растениями, животными и человеком в качестве запаса питательных веществ и источника энергии.

Растения запасают глюкозу в виде крахмала. Он откладывается преимущественно в клубнях и эндосперме семян в виде зерен. Крахмалоносные растения условно делятся на 2 группы: растения семейства злаковых и растения других семейств. В качестве промышленного продукта крахмал вырабатывается из пшеницы (Triticum vulgare L.), кукурузы (Zea mays L.) и риса (Oryza sativum L.). Из растений других семейств промышленным крахмалоносным растением является картофель (Solanum tuberosum L.).

2. Строение крахмала

2.1 Амилоза и амилопектин

крахмал амилоза амилопектин химия

Крахмал состоит из двух типов молекул, амилозы (в среднем, 20-30%) и амилопектина (в среднем, 70-80%). Оба типа являются полимерами, содержащими в качестве мономера α-D-глюкозу. Это соединения по своей природе противоположны: амилоза имеет меньшую молекулярную массу и больший объем, тогда как молекулы амилопектина тяжелее, но более компактные.

Амилоза (рис.1, рис.2) состоит из 500-20 000 мономеров, соединенных α-1,4 связями и образующих длинные цепи, часто образующих левозакрученную спираль.

Рисунок 1. Часть структурной молекулы амилозы

Рисунок 2. Часть цепи амилозы (объемное изображение)

В амилопектине (рис.3, рис.4, рис.5) мономеры также соединены α-1,4 связями, а также, примерно через каждые 20 остатков, α-1,6 связями, образуя точки ветвления.

Рисунок 3. Структурная молекула амилопектина

Рисунок 4. Часть структурной молекулы аминопектина

Рисунок 5. Модель разветвленной структуры амилопектина.

Мономеры, соединенные α(1→4)- гликозидными связями

точки ветвления. Мономеры, соединенные α(1→6)- гликозидными связями

Различные ветви молекулы амилопектина классифицируются как А-, В-и С-цепи. А-цепи - самые короткие и связаны только с В-цепями, которые могут быть связаны как с А-цепями, так и с другими В-цепями. Соотношение А - и В-цепей для большинства крахмалов составляет от 1:1 до 1,5:1.

В хлоропластах на свету откладываются зерна ассимиляционного (первичного) крахмала, образующиеся при избытке сахаров - продуктов фотосинтеза. Образование осмотически неактивного крахмала предотвращает повышение осмотического давления в хлоропласте. Ночью, когда фотосинтез не происходит, ассимиляционный крахмал с помощью ферментов гидролизуется до сахаров и транспортируется в другие части растения. Запасной (вторичный) крахмал откладывается в амилопластах (особом типе лейкопластов) клеток различных органов растений (корнях, подземных побегах, семенах) из сахаров, притекающих из фотосинтезирующих клеток. При необходимости запасной крахмал также превращается в сахара.

2 Образование и структура крахмальных зерен

Крахмальные зерна образуются в строме пластид. Образование крахмальных зерен начинается в определенных точках стромы пластиды, называемых образовательными центрами. Рост зерна происходит путем последовательного отложения слоев крахмала вокруг образовательного центра. Основным ферментом по образованию и формированию кристаллитов крахмала, является зернообразующая синтаза (GBSS granule bound synthase). По одной из теорий, биосинтез крахмала происходит на поверхности зерен, а молекулы амилозы и амилопектина ориентированы перпендикулярно ей и в противоположных направлениях. Так, на поверхности зерен у амилозы находится редуцирующий конец, а у амилопектина, наоборот, - нередуцирующие концы, которые могут дальше ветвиться и удлиняться ферментом ветвеобразующая синтаза (starch branched enzyme - SBE). У амилозы в этом случае цепь удлиняется под действием фермента растворяющая крахмальная синтаза (solub starch synthase - SSS), поэтому молекулы амилозы и амилопектина трудно совместимы и могут быть фракционированы при определенных условиях. Зерна нативных крахмалов имеют кольца роста, которые представляют собой чередующиеся слои различной плотности, кристалличности и сопротивляемости химическим и ферментным воздействиям. Широкие слои образуются в результате альтернативного наполнения и отвода молекул в пластидах с последовательным отложением больших нерастворимых и малых растворимых молекул; при этом в плотных слоях превалируют высокомолекулярные фракции амилопектина. Степень кристалличности зерен крахмала находится в пределах 14-42% и зависит от соотношения содержания амилозы и амилопектина. Короткие цепи в молекуле амилопектина образуют двойные спирали, которые формируют кристаллические ламели (кристаллиты). Свободные двойные спирали и кристаллиты создают так называемые полукристаллы.

Остальные молекулы амилозы и длинные цепи амилопектина формируют аморфную часть крахмальных зерен.

При синтезе амилопектина и его кристаллизации незначительное количество фосфатов остается связанным с гидроксильной группой 6-го атома углерода, их содержание в картофельном крахмале достигает 0,2%. Амилозе присуще при образовании спиралей захватывать находящиеся в цитозоле липиды. Содержание связанных липидов в крахмалах зерновых и зернобобовых культур составляет 0,2 - 1,3%.

Амилоза и амилопектин формируют структурный комплекс зерен, который состоит из кристаллической и аморфной частей. (рис. 6).

Рисунок 6. Структура кристаллической и аморфной частей слоёв крахмала

Смежные слои в одном зерне могут иметь различный показатель преломления света, и тогда они видны под микроскопом (рис. 7)

Рисунок 7. Слоистая структура крахмального зерна. Стрелкой указан образовательный центр

Форма, размер, количество в амилопласте и строение (положение образовательного центра, слоистость, наличие или отсутствие трещин) крахмальных зерен часто специфичны для вида растения (рис. 8). Обычно крахмальные зерна имеют сферическую, яйцевидную или линзовидную форму, однако у картофеля она неправильная. Наиболее крупные зерна (до 100 мкм) характерны для клеток клубней картофеля, в зерновке пшеницы они двух размеров - мелкие (2-9 мкм) и более крупные (30-45 мкм). Для клеток зерновки кукурузы характерны мелкие зерна (5-30 мкм).

Рисунок 8. Различные типы крахмальных зерен. У овса (1), картофеля (2), молочая (3), герани (4), фасоли (5), кукурузы (6) и пшеницы (7)

3 Виды крахмальных зерен

Если в амилопласте имеется один образовательный центр, вокруг которого откладываются слои крахмала, то возникает простое зерно, если два и более - то образуется сложное зерно, состоящее как бы из нескольких простых. Полусложное зерно образуется в том случае, если крахмал сначала откладывается вокруг нескольких точек, а затем, после соприкосновения простых зерен, вокруг них возникают общие слои (рис. 9)

Рисунок 9. Простые, полусложные и сложные крахмальные зерна

3. Классификация крахмала

Все крахмалы подразделяются на две группы: природные (или нативные) и рафинированные.

Рафинированный крахмал - белый порошок без вкуса и запаха. Очищенный от примесей природный крахмал. Его производят из крахмалсодержащих растений путём измельчения, уваривания и очищения. Содержится в муке, хлебе, макаронных изделиях, продаётся как самостоятельный продукт.

Рисунок 10. Классификация крахмала по исходному сырью

Зерно пшеницы является наиболее древним видом сырья для производства крахмала. При использовании такого сырья вырабатывают пшеничный крахмал.

Картофель является одним из основных видов сырья для производства крахмала. Из данного сырья получают картофельный крахмал.

Тапиоковый крахмал - является аналогом картофельного и производится в Азии из корня бобовой культуры кассавы (маниоки).

При переработке риса получаются мучка и лом (дробленка). Они являются наиболее подходящим сырьем для производства весьма ценного рисового крахмала.

Для производства соргового крахмала используют однолетнее растение рода сорго Sorghum Moench, который относится к семейству злаковых.

В процессе модификации крахмала получаются следующие его виды:

· расщепленный (гидролизованный);

· окисленный;

· набухающий;

· диальдегидный;

· замещенный.

Модифицированный крахмал - это специально обработанный крахмал, который благодаря своему составу лучше усваивается.

Модифицированный крахмал производят из натурального кукурузного или картофельного крахмала, и к генномодифицированным продуктам модифицированный крахмал не относится. Его модифицируют (от немецкого modifizieren - видоизменять, преобразовать) без помощи генетики. Существуют различные физические и химические способы обработки природного крахмала, благодаря которым можно получать его разновидности с заранее заданными свойствами. В результате модификаций крахмал приобретает свойство удерживать влагу в различных средах, что позволяет получить продукт заданной консистенции.

4. Физико-химические свойства

Крахмал - порошок белого или слегка кремоватого цвета. Практически нерастворим в 95% спирте, растворим в кипящей воде с образованием прозрачного или слегка опалесцирующего раствора, не застывающего при охлаждении. Растворимость в воде компонентов крахмала неодинакова. Амилоза хорошо растворяется в теплой воде, а амилопектин - плохо. Он образует коллоидные растворы. На различной растворимости в воде основан метод разделения компонентов крахмала. При растирании крахмала слышится характерный скрип.

Крахмал подвергается кислотному гидролизу, который протекает ступенчато и беспорядочно. При расщеплении он сначала превращается в полимеры с меньшей степенью полимеризации - декстрины, потом в дисахарид мальтозу, и в итоге - в глюкозу. Таким образом, получается целый набор сахаридов.


Крахмал гидролизуется ферментом α-амилазой (содержится в слюне и выделяется поджелудочной железой), расщепляющей беспорядочно α(1→4)-гликозидные связи. β-амилаза (присутствует в солоде) действует на α(1→4)-гликозидные связи, начиная с невосстанавливающего терминального остатка глюкозы, и последовательно отщепляет от полимерной цепи молекулы дисахарида мальтозы. Глюкоамилаза (содержится в плесневых грибах), подобно двум другим амилазам, гидролизует α(1→4)-гликозидные связи, последовательно отщепляя остатки D-глюкозы, начиная от невосстанавливающего конца. Селективное расщепление α(1→6)-гликозидных связей амилопектина происходит α-1,6-глюкозидазами, например, изоамилазой или пуллуланазой.

Амилаза, выделенная из Bacillus macerans, способна превращать крахмал в циклические продукты (циклодекстрины, декстрины Шардингера), в которых степень полимеризации равна 6-8, а остатки глюкоз связываются α(1→4)-гликозидными связями.

Являясь многоатомным спиртом, крахмал образует простые и сложные эфиры. Характерной качественной реакцией на крахмал является его реакция с йодом (йодкрахмальная реакция):

При взаимодействии йода с крахмалом образуется соединение включения (клатрат) канального типа. Клатрат - это комплексное соединение, в котором частицы одного вещества ("молекулы-гости") внедряются в кристаллическую структуру "молекул-хозяев". В роли "молекул-хозяев" выступают молекулы амилозы, а "гостями" являются молекулы йода. Молекулы йода располагаются в канале спирали диаметром ~1 нм, создаваемой молекулой амилозы, в виде цепей ×××I×××I×××I×××I×××I×××. Попадая в спираль, молекулы йода испытывают сильное влияние со стороны своего окружения (ОН-групп), в результате чего увеличивается длина связи I-I до 0,306 нм (в молекуле йода длина связи 0,267 нм). Причем эта длина едина для всех атомов йода в цепи (рис. 11). Данный процесс сопровождается изменением бурой окраски йода на сине-фиолетовую (l макс 620-680 нм). Амилопектин, в отличие от амилозы, дает с йодом красно-фиолетовое окрашивание (l макс 520-555 нм).

Рисунок 11. Взаимодействие йода с крахмалом

Декстрины, образующиеся при термической обработке крахмала, кислотном или ферментативном гидролизе, также реагируют с йодом. Однако цвет комплекса сильно зависит от молярной массы полимера (табл. 1)

Низкомолекулярные декстрины начинают проявлять внешние признаки реакций альдегидной формы глюкозы, т.к. по мере уменьшения полимерной цепи растет доля восстанавливающих терминальных остатков глюкозы.

Таблица 1 Цветные реакции декстринов с йодом

5. Получение

Основными сырьевыми источниками получения крахмала являются картофель и кукуруза. Процесс производства складывается главным образом из механических операций и основан на двух свойствах зерен крахмала: нерастворимости их в холодной воде и малых размерах при сравнительно большой плотности.

Для получения высококачественной готовой продукции хорошее качество сырья (сырого картофеля) имеет очень большое, а иногда и решающее значение. При переработке сырья вырабатывают сырой крахмал, не пригодный к длительному хранению, затем получают из него сухой крахмал и крахмалопродукты.

Для производства крахмала выращивают картофель крахмалистых высокоурожайных устойчивых к заболеваниям сортов. На качество вырабатываемого крахмала отрицательно влияют повышенное содержание в картофеле растительных белков, аминокислот, соланина. Белки, являясь пенообразователями, затрудняют промывку крахмальных зерен, загрязняют крахмал, осаждаясь на нем в виде хлопьев. Вследствие окисления аминокислоты тирозина образуются меланины. Они адсорбируются крахмалом и ухудшают его цвет. Тирозин также дает окрашенные соединения с ионами железа. Соланин - сильный пенообразователь. Зольные элементы, остающиеся в крахмале, влияют на вязкость и клеящую способность клейстеров.

Технология производства картофельного крахмала включает в себя несколько этапов, таких как: подготовка сырья к переработке (мойка, отделение посторонних примесей); измельчение клубней; выделение из полученной массы (кашки) картофельного сока и разорванных клеточных стенок (мезги); очистка крахмала от примесей; сушка и упаковка крахмала (рис. 12)

этап. Подготовка сырья к переработке: отделение от тяжелых примесей и мойка картофеля. Картофель из оборотного склада подается на камнеловушку барабанного типа, далее на мойку. Клубни картофеля хорошо отмывают от почвы в специальных мойках, отделяя при этом солому, камни и другие загрязнения.

этап. Измельчение картофеля. Отмытые от грязи клубни измельчают методом истирания или тонкого дробления, чтобы вскрыть клетки тканей клубня и высвободить крахмальные зерна. Картофель дважды измельчаются в кашку на скоростных терках или измельчающих машинах ударного действия.

После измельчения клубней, обеспечивающего раскрытия большей части клеток, получают смесь, состоящую из крахмала, почти полностью разрушенных клеточных оболочек, некоторого количества не разрушенных клеток и картофельного сока. Эту смесь называют картофельной кашкой.

3 этап. Выделение из полученной массы (кашки) картофельного сока и разорванных клеточных стенок (мезги). Измельченную массу направляют на центрифуги для отделения сока, способствующего потемнению крахмала, снижению вязкости клейстера, развитию микробиологических процессов. От мезги крахмал отмывают водой на ситовых аппаратах.

Крахмальное молоко, полученное после промывания кашки поступает для отделения соковой воды осадительные центрифуги. Соковую воду удаляют, а сырой крахмал, разбавленный свежей водой, в виде молока направляют на рафинирование

этап. Очистка крахмала от примесей. В рафинированном крахмальном молоке еще содержатся в небольшом количестве остатки растворимых веществ и мельчайших: частичек мезги. Поэтому его направляют на операцию окончательной очистки - промывание в непрерывно действующих гидроциклонных станциях. После механического отделения воды получают сырой крахмал с влажностью около 50 %. часть крахмала с пониженным качеством.

этап. Сушка и упаковка крахмала. Сырой крахмал сохраняется плохо из-за высокого содержания влаги. Поэтому сразу после выработки целесообразно обезвоживать его (на центрифугах), а затем или немедленно высушить или перерабатывать для получения других видов готовой продукции. Сырой крахмал высушивается в распылительной сушилке умеренно горячим воздухом.

Очищенный сухой крахмал фасуют в мешки и мелкую упаковку. Картофельный крахмал упаковывают в двойные тканевые или бумажные мешки, а также мешки с полиэтиленовыми вкладышами массой не более 50 кг. Затем взвешиваются на весах и зашиваются на мешкозашивочной машине.

6. Применение

6.1 В различных отраслях промышленности

Применение крахмала нашло свое место во многих отраслях. Крахмал применяется в пищевой, текстильной, бумажной, химической, резиновой, фармацевтической, парфюмерной и других отраслях промышленности, а также используется населением для личного потребления (приготовление киселей и соусов, крахмаление белья). Бумажная промышленность является крупнейшим потребителем крахмала, благодаря его специфическим свойствам и возобновляемости ресурсов. Различные виды крахмала используются на разных стадиях производства бумаги. Крахмал добавляют для улучшения внешнего вида и типографских свойств бумаги, увеличения прочности. В текстильной промышленности крахмалы используются для шлихтования, аппретирования и приготовления загущающих составов (загусток). Пищевая промышленность является одним из крупнейших потребителей крахмала. Большое количество крахмала продаётся в виде конечного продукта для домашнего использования. Крахмалы используются в пищевой промышленности с одной или несколькими из следующих целей:

· Непосредственно как клейстеризованный крахмал, кисель и т.п.

· В качестве загустителя, благодаря вязким свойствам (в супах, детском питании, соусах, подливах и т.д.)

· Как наполнитель, входящий в состав твёрдого содержимого супов, пирогов

· Как связующее для закрепления массы и предотвращения высыхания в процессе приготовления (колбасы и мясные продукты).

· Как стабилизаторы, благодаря высокой способности крахмала удерживать влагу.

Производство клея.

6.2 В фармацевтической химии

В аналитической и фармацевтической химии крахмал используется в качестве индикатора на йод в методе йодометрии и других титриметрических методах (ГФ XI, вып.2, стр.88-89).

Раствор индикатора. 1 г крахмала растворимого смешивают с 5 мл воды до получения однородной кашицы и смесь медленно вливают при постоянном размешивании в 100 мл кипящей воды. Кипятят в течение 2 мин до получения слегка опалесцирующей жидкости.

Срок годности раствора 3 сут.

Примечание. При приготовлении раствора индикатора из картофельного крахмала клейстер, полученный указанным выше образом, дополнительно нагревают в автоклаве- при 120° С в течение 1 ч.

Раствор крахмала с калия йодидом. Растворяют 0,5 г калия йодида в 100 мл свежеприготовленного раствора крахмала. Срок годности раствора 1 сут.

Йодкрахмальная бумага. Обездоленные бумажные фильтры пропитывают раствором крахмала с калия йодидом и сушат в темном помещении на воздухе, не содержащем паров кислот. Бумагу разрезают на полоски длиной около 50 мм и шириной около 6 мм. Полоска йодкрахмальной бумаги не должна тотчас синеть при смачивании ее 1 каплей раствора хлористоводородной кислоты (0,1 моль/л).

Йодкрахмальную бумагу хранят в банках оранжевого стекла с притертой пробкой в защищенном от света месте.

3 В медицине

Также крахмал используется в виде присыпки при ожогах и опрелости кожи у детей. Крахмал в вате, в виде сухого компресса, рекомендуется при роже. С конопляным или подсолнечным маслом в форме мази применяется при воспалении грудной железы (мастит).

4 В фармацевтической технологии

Крахмал широко используется при изготовлении различных лекарственных форм в виде самостоятельного лекарственного вещества и как вспомогательный компонент. Он является действующим или индифферентным веществом в порошках, наполнителем, связывающим и опудривающим средством в таблетках, эмульгатором в эмульсиях, как склеивающее вещество при производстве пилюль.

Заключение

Крахмал имеет высокую пищевую ценность, широко используется в различных областях промышленности. Огромно его значение в химии и фармации. Без изучения физико-химических свойств крахмала невозможно совершенствование методов исследования и изготовления лекарственных препаратов, технологий пищевых производств.

В ходе проведения данной работы было изучено:

1. строение крахмала, его микроструктура, составляющие компоненты (амилоза и амилопектин), их характеристики, влияющие на свойства крахмала;

2. процесс синтеза крахмала в растениях и образование крахмальных зерен;

Виды крахмальных зерен и их разнообразие в различных видах растений;

Классификация крахмала по исходному сырью;

Физико-химические свойства, способствующие его использованию человеком в различных сферах жизни;

Технология получения крахмала из клубней картофеля;

Применение крахмала в медицине, химической, фармацевтической, пищевой, текстильной и других видах промышленности.

В настоящее время совершенствуются технологии картофелекрахмального и кукурузнокрахмального производства, разработаны и внедрены новые типы центробежных измельчающих машин, дуговых сит, в том числе напорных, гидроциклонов, пневматических сушилок.

Эпохальными стали разработки по использованию ферментных препаратов для гидролиза крахмала. Главный итог исследований в этой области - создание новой технологии глюкозы с применением ферментных препаратов и одностадийной кристаллизацией глюкозы.

С внедрением нового способа гидролиза крахмала были разработаны технологии таких сахаристых крахмалопродуктов, как гранулированная глюкоза, мальтин, глюкозно-фруктозные сиропы и др.

В 2001 и 2003 гг. в Москве успешно прошли международные конференции по крахмалу. В их работе принимали участие специалисты многих стран мира.

Список литературы

1. Государственная фармакопея СССР. 11-е изд. Вып. 2. М.:Медицина

2. Николай Руфеевич Андреев. Основы производства нативных крахмалов

3. Технология переработки продукции растениеводства / Под ред. Н. М. Личко. - М.: Колос 2000 Серия "Учебники и учеб. Пособия для студентов ВУЗов".

Фармацевтическая технология. Под ред. Краснюка И.И. и Михайловой Г.В. М.: Академия, 2007

5. Харкевич Д.А. Фармакология. М.: ГЕОТАР-Медиа, 2006.

Кретович В.Л. Основы биохимии растений. М.: Высшая школа, 1971.

Машковский М.Д. Лекарственные средства. М.: Медицина, 2002.

8. A. Buléon, P. Colonna, V. Planchot and S. Ball, Starch granules: structure and biosynthesis, Int. J. Biol. Macromol. 1998

9. S. Jobling, Improved starch for food and industrial applications, Curr. Opin. Plant Biol. 2004

L. Copeland, J. Blazek, H. Salman and M. C. Tang, Form and functionality of starch, Food Hydrocolloids 2009

11. Крахмал. Строение, физико-химические свойства. http://www.sev-chem.narod.ru/spravochnik/teoriya/krahmal.htm

Синтез, образование зерен крахмала http://www.sergey-osetrov.narod.ru/Raw_material/Structure_characteristic_categorization_starch.htm

Строение амилозы и амилопектина http://www.elmhurst.edu/~chm/vchembook/547starch.html

Структура, свойства крахмала http://www.lsbu.ac.uk/water/hysta.html

Сайт Всероссийского научно-исследовательского института крахмалопродуктов (ВНИИК) http://www.arrisp.ru/index.shtml

Что бы ни утверждали диетологи и поклонники здоровых диет, а крахмал является важным компонентом в рационе человека. Он считается важным источником энергии людей. Но, как полагают врачи, употребление этого компонента может вызвать нарушения обмена веществ. Поэтому важно знать состав крахмала, а также правила его использования.

Описание

Это белое сыпучее вещество, иногда желтоватое. Порошок не имеет запаха и вкуса. Компонент не растворяется в холодной воде, но при взаимодействии с ней выделяет концентрация которых образует вязкую, густую массу. Если крахмал растирать пальцами или сжать в ладони, то появится поскрипывание. Звук получается из-за трения крупиц друг о друга. Они не разрушаются даже при таком воздействии.

Крахмал есть в различных растениях:

  • бананах;
  • горохе;
  • манго;
  • бобах;
  • клубнях и корнеплодах.

Состав крахмала влияет на его калорийность - 313 ккал на 100 г. Этот показатель отлично подходит для активных и крепких людей, которые постоянно тратят много энергии. В этом случае продукция будет полезна для организма.

Виды

Крахмал бывает:

  • картофельным;
  • кукурузным;
  • пшеничным;
  • рисовым;
  • соевым;
  • тапиоковым.

Применяется для выпечки хлеба. Он обладает свойством поглощения воды во время замеса теста. В процессе выпечки вещество клейстеризуется, участвуя в формировании мякиша хлеба. При хранении продукта клейстер стареет, из-за чего хлеб черствеет.

Идеален для получения соусов, десертов, сиропов. Тапиоковый создают из клубней маниоки. Клейстер будет более вязким по сравнению с кукурузным продуктом. Применяют его для приготовления супов, подлив.

Крахмал относится к сложным углеводам, которые делятся на природные (овощи, фрукты, бобовые) и рафинированные (мука и продукция из нее). Второй вид продуктов признан вредным.

Из чего состоит картофельный крахмал?

Состав крахмала разнообразный. В нем присутствует много простых сахаров, собранных в длинные цепи. Таковы состав и строение крахмала. Единицей 1 цепи считается глюкоза, которая в организме является источником энергии. Состав картофельного крахмала таков:

  • Микроэлементы - фосфор, кальций, калий.

Состав кукурузного крахмала

Для проверки качества продукта используется ГОСТ 32159-2013. В магазинах надо приобретать товары, изготовленные на основе этого документа.

По нему состав кукурузного крахмала следующий:

  • вода - 14-16 %;
  • кислотность - 20-25 куб. см;
  • протеин - 0,8-1 %;
  • SO2 - 50 мг/кг.

Примесей других крахмалов не должно быть. В состав крахмала этого вида входит немного селена, марганца, магния, натрия, цинка.

Варианты получения

Химический состав крахмала может отличаться в зависимости от исходного сырья. Ведь он бывает картофельным, кукурузным, рисовым, пшеничным, сорговым. Каждый продукт отличается свойствами и наличием дополнительных компонентов.

Если продукция получается из зерен, массу размачивают и перетирают для удаления зародышей из семян. Остаток вторично измельчают, а потом выделяют из него вещества и сушат. В итоге в нем могут быть минеральные компоненты и витамины. Такая процедура выполняется с картофелем, только вместо устранения зародышей проводится отвод сока и кожуры.

Обычно создание крахмала основывается на переработке картофеля. Клубни содержат этого вещества около 25 %. А в зерновых оно присутствует в пределах 65-80 %. Картофель используется чаще, поскольку из-за его измельчения оборудование не ломается быстро по сравнению с перетиранием зерновых.

Использование

Применяется продукт в пищевой промышленности. Из него готовят кисели, соусы, кремы, колбасы, выпечку. В большинстве сосисок присутствует именно крахмал, который добавляется для получения плотной консистенции. Обычно он служит в качестве загустителя продукта и связывания жидкости в нем. К примеру, для получения желе или майонеза. Для этого применяется модифицированный крахмал.

Этот углевод используется и в других сферах:

  1. В фармакологии применяется в качестве наполнителя в препаратах, имеющих форму таблеток. Его добавляют в детские присыпки, мази. С ним готовят сиропы, микстуры, сорбиты и глюкозу.
  2. В медицине его используют при интоксикациях, гастритах, язвах. Крахмал прекрасно защищает слизистую желудка и кишечника. Продукт избавляет от шпор на пятках, снимает кожное раздражение, опрелости.
  3. В косметологии из продукта готовят маски, кремы. Такие составы обладают питательным и смягчающим действием. Средства не вызывают аллергию, используются для всех типов кожи.
  4. В целлюлозной и текстильной промышленности. Продукт нужен для обработки бумаги и считается ее наполнителем. Состав крахмала и целлюлозы позволяет использовать их в разных областях. В текстильной сфере применяется для обработки материалов.

Польза и вред

Важно знать состав и свойства крахмала. Продукт насыщает энергией. Именно из-за его наличия в зернах, крупах хлеб, выпечка и каши являются питательными. Крахмал с большим содержанием амилозы является так называемым массажером для кишечника. Он хуже расщепляется по сравнению с продуктом, который содержит амилопектин, поэтому образует комок в кишечнике, стимулирующий его работу, улучшающий пищеварение. Полезным свойством продукта является способность восстановления организма после изменения уровня сахара в крови при диабете.

Но есть у крахмала и вредные свойства. С ним человек быстро набирает вес из-за содержания большого количества калорий. Продукт прекрасно подойдет людям, которые много двигаются. В остальном у него нет противопоказаний.

Суточная норма

Крахмал под влиянием кислоты подвергается гидролизации, после чего превращается в глюкозу. Она будет главным источником энергии организма. Поэтому для хорошего самочувствия человеку нужно употреблять некоторое количество крахмала.

Достаточно кушать каши, хлебобулочные и макаронные изделия, бобовые, картофель и кукурузу. В пищу следует добавлять хотя бы немного отрубей. Суточной нормой считается 330-450 грамм.

Так как крахмал считается сложным углеводом, его употребляют в том случае, если будет отсутствовать возможность частого питания. Продукт трансформируется из-за желудочного сока, выделяя нужную для организма глюкозу. Потребность в продукте уменьшается при болезнях печени, небольших физических нагрузках, а также при работе, для которой нужно быстрое поступление энергии.

Нехватка и избыток

Необходимо употреблять продукт в меру, чтобы не навредить организму. При недостатке человек мучается:

  • слабостью;
  • быстрой утомляемостью;
  • частыми депрессиями;
  • понижением иммунитета;
  • снижением полового влечения.

Но бывает избыток крахмала. Тогда наблюдаются следующие признаки:

  • головные боли;
  • большой вес;
  • снижение иммунитета;
  • раздражительность;
  • проблемы в тонком кишечнике;
  • запоры.

Выбор

При покупке следует обратить внимание на дату изготовления, целостность упаковки, отсутствие комков. У продукта не должно быть затвердений. Важно наличие порошка белого цвета. С растиранием образуется характерный скрип. Хранится продукт до 5 лет в герметичной емкости.

Для приготовления крема и бисквитного теста отлично подходит кукурузный крахмал. Внешний вид подобен муке высшего качества. Кисели готовят из картофельного крахмала. Продукт применяется для выпечки творожных и фруктовых тортов. Он имеет белоснежный цвет.

Приготовление

Дома можно приготовить крахмал. Для этого необходим мелкий, подмерзший и травмированный картофель. Его надо помыть, очистить. Подгнившие и сильно грязные участки надо устранить. Потом картофель натирается на терке, пропускается через мясорубку. Но можно его растолочь.

В или кастрюлю надо налить холодную воду. Массу понемногу надо выкладывать в сито и погружать в емкость, протирая кашицу, помыть крахмал, поливать водой сверху. Мезгу следует отжать.

Из таза надо слить прозрачную воду так, чтобы не взболтать крахмал на дне. Затем его заливают холодной водой, размешивают и дают ему осесть. Воду сливают, а крахмал перекладывают на бумагу или полотенце для сушки. Потом продукт просевается и хранится в сухом месте.

Содержимое (Table of Contents)

ОФС.1.5.3.0003.15 Техника микроскопического и микрохимического исследования лекарственного растительного сырья и лекарственных растительных препаратов

Взамен ст. ГФ ХI, стр. 277, стр. 282

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Термины и определения


Анатомо-диагностические признаки
— совокупность признаков анатомического строения лекарственного растительного сырья, отличающих данное лекарственное растительное сырье/препарат от других видов при диагностике его подлинности.

Микроскопическое исследование – исследование, при котором в общей картине анатомического строения различных морфологических органов растений идентифицируются под микроскопом характерные анатомо-диагностические признаки; при этом руководствуются разделом «Микроскопия» соответствующей фармакопейной статьи или нормативной документации на исследуемый вид лекарственного растительного сырья/препарата.

Микрохимическое исследование – исследование, при котором проводят микрохимические реакции одновременно с микроскопическим анализом лекарственного растительного сырья/препарата, наблюдая их результаты под микроскопом; при этом руководствуются разделом «Микроскопия» соответствующей фармакопейной статьи или нормативной документации на исследуемый вид лекарственного растительного сырья/препарата. Обычно микрохимическое исследование включает микрохимические реакции для обнаружения действующих и сопутствующих веществ: алкалоидов, дубильных веществ, слизи, инулина, крахмала и др.

Гистохимическое исследование исследование, при котором проводят гистохимические реакции одновременно с микроскопическим анализом лекарственного растительного сырья (препарата); при этом руководствуются разделом «Микроскопия» соответствующей фармакопейной статьи или нормативной документации на исследуемый вид лекарственного растительного сырья/препарата. Обычно гистохимическое исследование включает гистохимические реакции, позволяющие провести окрашивание анатомических структур и тканей: эфиромасличных железок, вместилищ, одревесневших оболочек сосудов, механических волокон, кутинизированных оболочек (кутикулу, покрывающую эпидермис), опробковевших оболочек покровной ткани (пробку) и др.

Микропрепарат – препарат исследуемого объекта, подготовленный на предметном стекле с целью его дальнейшего изучения под микроскопом.

Поперечный срез – срез морфологического органа растительного объекта, выполненный перпендикулярно вертикальной оси этого морфологического органа. Обычно на поперечном срезе рассматривают диаметр сосудов, механических волокон, млечников, вытянутых вместилищ, структуру сосудисто-волокнистых пучков подземных органов, стеблей, черешков и т.д. в поперечном сечении.

Продольный срез – срез морфологического органа растительного объекта, выполненный параллельно вертикальной оси этого морфологического органа. Обычно на продольном срезе изучают длину сосудов, механических волокон и других вытянутых структур; характер утолщенности (перфорации) стенок этих структур; строение сосудисто-волокнистых пучков подземных органов, стеблей, черешков и т.д. в продольном сечении.

«Давленый» микропрепарат – микропрепарат, полученный из морфологического органа растительного объекта путем раздавливания его на предметном стекле обратным концом препаровальной иглы или скальпелем с целью получения более тонкого слоя исследуемого объекта и возможности детального рассмотрения его структур. Обычно «давленые» микропрепараты готовят из плодов, подземных органов, коры, крупного порошка различных морфологических органов и др.

Общие положения

Техника приготовления микропрепаратов из лекарственного растительного сырья и лекарственных растительных препаратов разнообразна и зависит от морфологической группы исследуемого объекта, а также от состояния лекарственного растительного сырья/препарата — цельного, измельченного или порошка.

Техника микроскопического и микрохимического исследования лекарственного растительного сырья и лекарственных растительных препаратов совпадает, поэтому она представлена по морфологическим группам.

Количественная оценка анатомо-диагностических признаков проводится во всех рассматриваемых морфологических группах лекарственного растительного сырья одинаково. Частота встречаемости анатомо-диагностических признаков обычно учитывается на эпидермисе листьев, черешков, лепестков, чашелистиков, цветоножек, стеблей, плодов, семян, плодоножек. При необходимости измеряется толщина лепестков и чашелистиков.

Для определения подлинности лекарственного растительного сырья и лекарственных растительных препаратов может быть также использован метод люминисцентной микроскопии. Преимуществом метода является возможность его применения для изучения сухого растительного материала, из которого готовят толстые срезы или препараты порошка, и рассматривают их в падающем свете, при освещении препарата сверху, через опак-иллюминатор или объектив.

Люминисцентная микроскопия выполняется с помощью люминисцентных микроскопов или обычных биологических микроскопов, снабженных специальными люминисцентными осветителями.

Препараты в люминисцентном микроскопе рассматривают в ультрафиолетовом свете, наблюдая первичную (собственную) люминисценцию.

Для приготовления микропрепаратов используют сухое лекарственное растительное сырье или его порошок. Предварительное размачивание сырья исключается, так как это приводит к вымыванию веществ из клеток; допускается лишь непродолжительное размягчение во влажной камере.

Листья

Цельное сырье. Для анализа цельных листьев берут цельные листья или кусочки пластинки листа с краем и жилкой, кусочки листа от основания и верхушки, кусочки черешка (если лист имеет черешок).

Просветляют одним из двух способов:

  1. Несколько кусочков сырья помещают в колбу или пробирку, прибавляют натрия гидроксида раствор 5 %, разведенный водой (1:1), и кипятят в течение 2 — 5 мин в зависимости от толщины и плотности объекта, не допуская сильного размягчения. Более жесткие листья (толокнянка, брусника, эвкалипт) кипятят до 5 мин, более хрупкие листья (крапива, чистотел) кипятят до 2 мин. Затем содержимое переливают в стеклянный стакан, жидкость сливают через 2 — 4 слоя марли, которой закрывают стакан, и сырье тщательно промывают водой, каждый раз сливая воду через ту же марлю. Содержимое стакана переносят в небольшом количестве воды в чашку Петри. Частички сырья, оставшиеся на марле, смывают в ту же чашку Петри. Из воды кусочки вынимают скальпелем или лопаточкой и помещают на предметное стекло в каплю раствора хлоралгидрата или глицерина раствора 33 %.
  2. Кусочки сырья кипятят в растворе хлоралгидрата, разведенного водой (1:1), в течение 5 — 10 мин (до просветления). Просветленный кусочек сырья помещают на предметное стекло в каплю раствора хлоралгидрата или глицерина раствора 33 %.

Кусочки сырья, просветленные тем или иным способом и помещенные на предметное стекло, разделяют скальпелем или препаровальными иглами на две части, одну из них осторожно переворачивают. Кожистые и толстые листья раздавливают скальпелем или обратным концом препаровальной иглы. Кусочек черешка помещают на предметное стекло. Тонкие черешки раздавливают скальпелем или обратным концом препаровальной иглы для высвобождения эпидермиса. С толстых черешков снимают эпидермис с помощью препаровальных игл или бритвы, убирая грубые внутренние части черешка, мешающие получению хорошего микропрепарата эпидермиса. Объект накрывают покровным стеклом, при необходимости слегка сверху придавливают чистым обратным концом препаровальной иглы и слегка подогревают до удаления пузырьков воздуха, после охлаждения рассматривают лист с обеих сторон и эпидермис черешка под микроскопом сначала при малом, затем при большом увеличении. При разных увеличениях, пользуясь макро- и микровинтом, исследуют верхний и нижний эпидермис, а также глубинные структуры листа, расположенные под эпидермисом (паренхима, включения, сосуды и т.д.).

При анализе толстых и кожистых листьев (эвкалипт, толокнянка, брусника) готовят поперечные срезы. При необходимости также готовят поперечные срезы черешков. Для чего используют два способа размачивания.

  1. Листья (черешки) кипятят в растворе хлоралгидрата в течение
    10 мин.
  2. При отсутствии хлоралгидрата выбранные листья (черешки) и их кусочки помещают в воду на 1 — 2 ч, после размачивания переносят в смесь глицерин – вода – этанол (1: 1: 1), где выдерживают 1 — 2 сут до полного пропитывания тканей жидкостью. В этой жидкости материал можно хранить продолжительное время, для чего при приготовлении смеси к ней добавляют кристаллик фенола.

Из размоченных объектов делают срезы, зажимая кусочки листа (черешка) в бутылочную пробку (коровую) или сердцевину бузины. При использовании бутылочной пробки ее предварительно кипятят в воде 15 мин. Кусочек бузины или бутылочной пробки разрезают пополам и между двумя половинками зажимают кусочек листа. Для изготовления поперечных срезов поверхность кусочка следует подготовить так, чтобы она была строго перпендикулярна к оси черешка или жилке листа. Для поперченного среза из листа вырезают небольшой участок, так чтобы попала средняя или боковая жилка, срез ведут перпендикулярно к жилке. Готовые срезы помещают в чашку Петри с водой, откуда срезы вынимают, просматривают под микроскопом, отбирая удачные.

При использовании первого способа размачивания срезы для их изучения помещают на предметное стекло в раствор хлоралгидрата. При втором способе размачивания срезы требуют дополнительного просветления. Для чего их помещают в натрия гидроксида раствор 5 % на предметное стекло, накрывают покровным стеклом и осторожно нагревают над пламенем горелки до полного просветления. После охлаждения микропрепарата с левой стороны покровного стекла помещают небольшой кусочек фильтровальной бумаги, а с правой начинают понемногу вводить пипеткой глицерина раствор 33 % до получения препарата с бесцветной включающей жидкостью. Полученный микропрепарат изучают под микроскопом.

Измельчённое сырье. Для анализа берут кусочки пластинки листа с краем и жилкой, кусочки листа от основания и верхушки, кусочки черешка (если лист имеет черешок). Далее с выбранными кусочками поступают так же, как в случае с цельными листьями.

Порошок. Для изучения порошка можно использовать два способа получения микропрепаратов.

  1. На предметное стекло наносят 1 — 2 капли раствора хлоралгидрата и небольшое количество исследуемого порошка. Порошок берут кончиком препаровальной иглы, смоченной хлоралгидратом, тщательно размешивают, закрывают покровным стеклом и нагревают до удаления пузырьков воздуха. Затем стекло слегка придавливают ручкой препаровальной иглы, выступившую по краям жидкость удаляют полоской фильтровальной бумаги. Порошки кожистых листьев просветляют кипячением в натрия гидроксида растворе 5 %.
  2. При отсутствии хлоралгидрата на предметное стекло наносят
    1 — 2 капли натрия гидроксида раствора 5 % и небольшое количество порошка. Порошок берут кончиком препаровальной иглы, смоченной натрия гидроксида раствором 5 %, тщательно размешивают, закрывают покровным стеклом и нагревают над пламенем горелки до просветления. После охлаждения удаляют фильтровальной бумагой натрия гидроксида раствор с одной стороны покровного стекла, добавляя с противоположной стороны пипеткой глицерина раствор 33 %.

Цветки

Цельное сырье. Для анализа берут чашечку, венчик, тычинки, пестик, цветоножку, также, если есть, листочки обертки корзинки, прицветные листы и другие элементы цветка и соцветий, если таковые имеются. Способы просветления используют те же, что и для листьев. Для исследования пыльцы раздавливают пыльники тычинок обратным концом препаровальной иглы. Следует учесть, что тонкие лепестки кипятят в натрия гидроксида растворе 5 % не более 1 мин. Анализ цветоножки проводят аналогично анализу черешка листа. При необходимости делают поперечные срезы цветоножки.

Измельченное сырье. Для анализа берут кусочки чашечки, венчика, цветоножки, а также тычинки, пестик и другие элементы цветка и соцветий, если таковые имеются. Если сырье имеет небольшие размеры, то берут цельные чашечку и венчик. Далее с выбранными кусочками поступают так же, как в случае с цельными цветками.

Порошок.

Травы

Цельные травы. Для анализа берут цельные листья или кусочки пластинки листа с краем и жилкой, кусочки листа от основания и верхушки, кусочки черешка (если лист имеет черешок); чашечку, венчик, тычинки, пестик и цветоножку, при необходимости другие элементы цветка и соцветий, если таковые имеются; кусочки стеблей, если есть, и при необходимости плоды. Используют способы просветления, описанные для листьев, цветков и плодов.

Для исследования стеблей их обрезки кипятят в натрия гидроксида растворе 5 % в течение 3 — 5 мин в зависимости от толщины и грубости объектов. Эпидермис снимают скальпелем или препаровальными иглами; из остальных тканей готовят микропрепарат, раздавливая объект скальпелем на предметном стекле в хлоралгидрата растворе или глицерина растворе 33 %. При необходимости готовят поперечные срезы, для чего используют методику приготовления поперечных срезов черешка листа, учитывая, что при помещении кусочков стеблей между двумя половинками пробки необходимо сделать бритвой соответствующие углубления для предотвращения сдавливания тканей исследуемого объекта.

Измельченное сырье. Выбирают кусочки листьев, цветков, стеблей, плодов или при их небольших размерах цельные перечисленные объекты. Далее с ними поступают так же, как в случае с цельной травой.

Порошок. Микропрепараты готовят аналогично микропрепаратам листьев.

Плоды и семена

Цельное сырье. Готовят препараты кожуры семени и околоплодника с поверхности или поперечные срезы.

Препараты кожуры и околоплодника с поверхности . 2 — 3 семени или плода кипятят в пробирке в натрия гидроксида растворе 5 % в течение
2 — 3 мин и тщательно промывают водой. Объект помещают на предметное стекло, препаровальными иглами отделяют кожуру семени или ткани околоплодника и рассматривают их в растворе хлоралгидрата или глицерина растворе 33 %.

Ткани мезокарпия и эндокарпия рассматривают в давленых препаратах и на срезах. Давленые препараты получают при использовании обратного конца препаровальной иглы или скальпеля путем надавливания на объект в заключающей среде на предметном стекле.

Для приготовления срезов сухие плоды и семена предварительно размягчают, поместив их на 1 сут во влажную камеру (влажной камерой служит эксикатор с водой, в которую добавлено несколько капель хлороформа) или водяным паром в течение 15 — 30 мин или более в зависимости от твердости объекта.

Можно также использовать 2-й способ размачивания перед получением поперечных срезов, описанный в разделе «Листья», помещая при этом анализируемые объекты в воду на 1 сут, далее в смесь глицерин – вода –этанол (1:1:1) на 3 сут.

Мелкие плоды и семена запаивают в парафиновый блок размером 0,5×0,5×1,5 см. Кончиком нагретой препаровальной иглы расплавляют парафин и в образовавшуюся ямку быстро погружают объект. Поверхность объекта должна быть сухой. Срезы объекта делают вместе с парафином; срезы выбирают из парафина препаровальной иглой, смоченной жидкостью, и готовят микропрепараты в растворе хлоралгидрата или глицерина растворе 33 %.

Для изготовления срезов из мелких плодов и семян можно также использовать пробку бузины или бутылочную пробку. Техника приготовления срезов описана в разделе «Листья». Необходимо при этом в используемых половинках пробки делать углубления, соответствующие размерам плодов и семян.

Измельченное сырье. Выбирают крупные кусочки плодов и семян. Получают препараты аналогично препаратам цельного сырья. Более удобно проводить анализ в давленых препаратах, для чего просветленные объекты раздавливают обратным концом препаровальной иглы или скальпелем на предметном стекле в заключающей жидкости.

Из более крупных кусочков при необходимости готовят поперечные срезы, заливая анализируемые объекты в парафиновый блок или используя пробку бузины или бутылочную пробку.

Порошок. Микропрепараты готовят аналогично микропрепаратам порошка листьев.

При исследовании строения клеток кожуры и околоплодника в порошке из плодов и семян, содержащих крахмал или незначительное количество жирного масла, препарат готовят в растворе хлоралгидрата при легком подогреве. При необходимости порошок обезжиривают и просветляют.

Для обезжиривания порошок сырья помещают в пробирку с притертой пробкой и заливают 2 — 3 раза смесью спирта с эфиром (1:3) и после настаивания каждый раз в течение 20 мин растворитель сливают. Вместо смеси спирта с эфиром для обезжиривания можно использовать ксилол или эфир.

Для просветления 0,5 — 1 г порошка насыпают в фарфоровую чашку, прибавляют 5 — 10 мл азотной кислоты разведенной 16 % и кипятят в течение 1 мин, затем жидкость процеживают через ткань и порошок промывают горячей водой. Остаток на ткани собирают лопаточкой обратно в фарфоровую чашку, обливают 5 — 10 мл натрия гидроксида раствора 5 %, кипятят в течение 1 мин, снова процеживают через ту же ткань и промывают горячей водой. После этого порошок рассматривают в глицерина растворе 33 % под микроскопом.

Крахмал

  1. Цельные плоды или кусочки плодов, размоченные по второму способу, или полученные срезы, или порошок сырья на кончике препаровальной иглы, смоченном заключающей жидкостью, помещают в
    2 — 3 капли воды или глицерина раствора 33 % на предметном стекле и рассматривают крахмальные зерна. Из цельного, измельченного и дробленого сырья делают давленые препараты. При изучении крахмальных зерен определяют их форму, строение, размеры измеряют окулярным микрометром.
  2. Цельные плоды или кусочки плодов, размоченные по второму способу, или полученные срезы, или порошок сырья на кончике препаровальной иглы, смоченном реактивом, помещают в 2 — 3 капли раствора Люголя, накрывают покровным стеклом и наблюдают крахмальные зерна. Из цельного, измельченного и дробленого сырья готовят давленые препараты, в которых рассматривают крахмал. Крахмальные зерна приобретают синее или сине-фиолетовое окрашивание. Необходимо учитывать, что окраска исчезает при нагревании. Приготовленный препарат следует анализировать сразу после его приготовления, так как окраска сохраняется недолго.

Жирное и эфирное масло

  1. Эфирные масла наблюдаются без применения красителей в виде капель светло-желтого, темно-желтого, зеленовато-желтого, коричневато-красного цвета.
  2. Жирные и эфирные масла обнаруживают по реакции окрашивания с раствором Судана III. Для чего цельные плоды, кусочки плодов, готовые срезы или порошок на кончике препаровальной иглы, смоченном реактивом, помещают в 2 — 3 капли раствора Судана III, накрывают покровным стеклом и нагревают. Из цельного, измельченного и дробленого сырья готовят давленые препараты в используемом реактиве. Капли жирного или эфирного масла окрашиваются в оранжево-розовый или оранжево-желтый цвет.
  3. Для отличия эфирных масел от жирных масел объекты погружают в 2 — 3 капли раствора метиленового синего. Через несколько минут их рассматривают в воде или глицерине. Эфирное масло окрашивается в синий цвет.

Слизь. Цельные и измельченные плоды измельчают в порошок. Для обнаружения слизи готовят препарат порошка в растворе черной туши, для чего порошок сырья на кончике препаровальной иглы, смоченном в используемом реактиве, помещают в 2 — 3 капли раствора черной туши, тщательно перемешивают, накрывают покровным стеклом и тотчас рассматривают под микроскопом (малое увеличение); слизь заметна в виде бесцветных масс на черном фоне.

Кора

Цельное сырье. Готовят поперечные или продольные срезы коры. Кусочки коры размером (2 — 3) см × (0,5 — 1) см кипятят в колбе или пробирке с водой в течение 5 мин. Размягченные куски выравнивают скальпелем так, чтобы они имели строго поперечное или продольное сечение. Делают срезы и готовят микропрепараты в растворе хлоралгидрата или глицерина растворе 33 %. При необходимости готовят препараты в соответствующих реактивах для выявления различных структур или веществ.

Измельченное сырье. Соскоб коры или мелкие кусочки кипятят в течение 3 — 5 мин в натрия гидроксида растворе 5 %, промывают водой и готовят микропрепараты, раздавливая объект скальпелем в растворе хлоралгидрата или глицерина растворе 33 %.

Одревесневшие элементы определяют по реакции, описанной для цельной коры.

Наличие крахмала, дубильных веществ, производных антрацена определяют в соскобе сухой коры.

Порошок. Готовят несколько микропрепаратов аналогично микропрепаратам порошка листьев для выявления анатомо-диагностических признаков коры и содержащихся в ней веществ по методикам, описанным ниже.

Одревесневшие (лигнифицированные) элементы. К срезу на предметном стекле прибавляют несколько капель раствора флороглюцина и 1 каплю серной кислоты раствора 25 %. Через 1 мин жидкость удаляют полоской фильтровальной бумаги, срез заключают в раствор хлоралгидрата или глицерина и закрывают покровным стеклом (рассматривают без подогревания); одревесневшие механические элементы окрашиваются в малиново-красный цвет.

Для окраски одревесневших элементов можно использовать также раствор сафранина. Срезы помещают в сафранина раствор на 30 мин (в закрытом бюксе или на часовом стекле), промывают сначала спиртом этиловым 50 %, затем подкисленным спиртом этиловым (на 100 мл спирта этилового прибавляют 2 капли хлористоводородной кислоты концентрированной) и заключают на предметном стекле в глицерин. Одревесневшие оболочки окрашиваются в красный цвет.

Крахмал. Для обнаружения крахмала делают соскоб сухой коры и рассматривают его в растворе Люголя. Крахмальные зерна окрашиваются в синий цвет.

Дубильные вещества. Наличие дубильных веществ устанавливают, нанося 1 каплю железа(III) аммония сульфата раствора 1 % (раствора квасцов железоаммониевых) или железа(III) хлорида раствора 3 % на внутреннюю поверхность сухой коры; появляется черно-синее или черно-зеленое окрашивание.

Производные антрацена. Наличие производных антрацена определяют, нанося 1 — 2 капли натрия гидроксида раствора 10 % на внутреннюю поверхность коры (кроваво-красное окрашивание), или проводят микросублимацию описанным ниже способом.

Почки

Цельное сырье. Готовят препараты с поверхности из цельных почек, а также поперечных и продольных срезов.

Качественные микрохимические и гистохимические реакции проводят на поперечных и продольных срезах, препаратах с поверхности кроющих чешуй с целью обнаружения кутикулы, эфирного масла, слизи, смолистых веществ, лигнифицированных оболочек клеток.

Корни, корневища, клубни, луковицы, клубнелуковицы

Цельное сырье . Готовят поперечные и продольные срезы. Небольшие куски подземных органов помещают в холодную воду и выдерживают около 1 сут, затем помещают в смесь этилового спирта 95 % и глицерина (1:1) на 3 сут. Размоченные объекты выравнивают скальпелем так, чтобы они имели строго поперечное или продольное сечение. Делают срезы и готовят микропрепараты в растворе хлоралгидрата или глицерина растворе 33 % и рассматривают анатомо-диагностические признаки сначала при малом, затем при большом увеличении.

С соскобом сухих подземных органов проводят необходимые микрохимические реакции, описанные ниже.

Измельченное сырье. Кусочки подземных органов кипятят в течение 3 — 5 мин в натрия гидроксида растворе 5 %, тщательно промывают водой и готовят микропрепараты, раздавливая кусочки в глицерина растворе 33 % или растворе хлоралгидрата.

С соскобом или порошком подземных органов проводят необходимые микрохимические реакции, описанные ниже.

Порошок. Микропрепараты порошка готовят аналогично микропрепаратам порошка листьев. Для выявления содержащихся действующих веществ готовят препараты по методикам, описанным ниже.

Инулин. Для обнаружения инулина на предметное стекло помещают около 0,1 г порошка (соскоба), 1 — 2 капли α-нафтола спиртового раствора 20 % (или резорцина раствора, или тимола спиртового раствора 20 %) и 1 каплю серной кислоты концентрированной; появляется красновато-фиолетовое окрашивание (от резорцина и тимола — оранжево-красное). О наличии инулина можно делать выводы только при отсутствии крахмала.

Наличие одревесневших элементов, крахмала, слизи, жирного и эфирного масла, дубильных веществ, производных антрацена определяют, как указано в разделах «Плоды и семена» и «Кора».

Количественная характеристика анатомо-диагностических признаков лекарственного растительного сырья

Используется при описании конкретных анатомо-диагностических признаков лекарственного растительного сырья/препаратов, впервые вводимых в практику медицинского применения в процессе разработки на него фармакопейных статей или нормативной документации, а также при проведении анализа лекарственного растительного сырья/препаратов по разделу «Микроскопия», в тех случаях, когда указаны размеры анатомо-диагностических признаков и частота их встречаемости. Особенно важна количественная характеристика анатомо-диагностических признаков при анализе лекарственного растительного сырья/препаратов с целью его отличия от других родственных видов, которые нередко имеют похожие анатомо-диагностические признаки, но имеют другие количественные характеристики.

Определение размеров анатомо-диагностических признаков.

Для снятия размеров анатомо-диагностических признаков пользуются объект-микрометром и окуляр-микрометром. Единицей для измерения микроскопических объектов служит микрометр (мкм), ранее использовался микрон (µ), составляющие одну тысячную долю миллиметра. Окуляр-микрометр вкладывается в окуляр, его шкала может быть различной в зависимости от объектива. Объект-микрометр имеет шкалу размером 1 мм, разделенную на 100 частей, то есть одно деление равно 0,01 мм или 10 мкм. Объект-микрометр ставят на столик микроскопа, а шкалу ставят так, чтобы она совпала со шкалой окуляр-микрометра. Определив значение одного деления окуляр-микрометра, снимают объект-микрометр и при том же объективе измеряют требуемый объект.

Пример 1. При совмещении шкал окуляр- и объект-микрометров обнаружено, что 50 делений окуляр-микрометра совпадает с 10 делениями объект-микрометра.

50 делений окуляр-микрометра = 10 делений объект-микрометра × 10 мкм = 100 мкм

Цена деления окуляр-микрометра составляет:

При измерении простого волоска установлено, что его высота составляет 10 делений окуляр-микрометра. Реальный размер этого волоска составит: 10 · 2 мкм = 20 мкм.

Пример 2. 40 делений окуляр-микрометра точно совпадают с 9 делениями объект-микрометра. Цена деления окуляр-микрометра соответствует:

При измерении диаметра эфиро-масличной железки установлено, что он составил 5 делений окуляр-микрометра. Реальный размер эфиро-масличной железки соответствует: 5 · 2 мкм = 10 мкм.

Определение частоты встречаемости анатомо-диагностических признаков на единицу площади (1 мм 2) органа, ткани (эпидермиса). Для определения частоты встречаемости сначала необходимо вычислить площадь поля зрения микроскопа (при той же комбинации объектива и окуляров, при которой будет проводиться подсчет) по формуле:

S = πr 2 ,

где S — площадь поля зрения микроскопа, мм 2 ;

r — радиус поля зрения микроскопа, мм;

d диаметр поля зрения микроскопа, мм;

Диаметр (d ) поля зрения микроскопа измеряется объект-микрометром. Зная цену деления объект-микрометра (см. маркировку на пластинке объект-микрометра), легко вычислить диаметр поля зрения микроскопа. Затем подсчитывают количество изучаемых структурных элементов (анатомо-диагностических признаков) в поле зрения микроскопа (при условии, что изучаемая ткань или орган занимают все поле зрения микроскопа). Количество изучаемых структурных элементов (анатомо-диагностических признаков) на единицу площади в 1 мм 2 определяют по формуле:

N = n · 1 (мм 2)/S ,

N — количество изучаемых структурных элементов (анатомо-диагностических признаков) на единицу площади в 1 мм 2 ;

n — количество изучаемых структурных элементов (анатомо-диагностических признаков) в поле зрения микроскопа;

S — площадь поля зрения микроскопа, мм 2 .

Отношение 1 (мм 2)/S является постоянным коэффициентом для данной оптики, на который можно умножать подсчитанное количество структурных элементов в поле зрения, не составляя каждый раз уравнения.

Пример. d = 420 мкм = 0,42 мм; r = 210 мкм = 0,21 мм;

r 2 = 0,0441 мм 2 ; S = 3,1416 · 0,0441 = 0,138 мм 2 .

В поле зрения подсчитано 52 устьица. Количество устьиц (N ) на площадь 1 мм 2 вычисляют:

N = 52 · 1/0,138 = 52 · 7,25 = 373.

Таким образом, на площадь эпидермиса листа в 1 мм 2 приходится 373 устьица. 7,26 — постоянный коэффициент для данной оптики.

Измерение толщины объекта (лепестков и чашелистиков)

При измерении толщины пользуются микрометрическим винтом микроскопа. Сначала наводят на резкость верхнюю поверхность измеряемого объекта, а затем нижнюю. Отмечают разность в обоих положениях микровинта по делениям, которые на нем имеются. Эти деления обычно соответствуют микрометрам. При применении иммерсионных объективов эта разность равна толщине объекта, при объективах сухих систем ее надо умножить на 1,5, т.е. на соотношение между показателями преломления стекла и воздуха.

Люминесцентная микроскопия

Метод люминесцентной микроскопии применяется (когда это целесообразно) для определения подлинности лекарственного растительного сырья. Преимуществом метода является возможность его применения для изучения сухого растительного материала, из которого готовят толстые срезы или микропрепараты порошка, и рассматривают их в падающем свете, при освещении препарата сверху, через опак-иллюминатор или объектив.

Люминесцентная микроскопия выполняется с помощью люминесцентных микроскопов или обычных биологических микроскопов, снабженных специальными люминесцентными осветителями.

Приготовление микропрепаратов. Для приготовления микропрепаратов используют высушенное лекарственное растительное сырье или его порошок. Предварительное размачивание сырья исключается, так как это приводит к вымыванию веществ из клеток; допускается лишь непродолжительное размягчение во влажной камере.

Листья. Готовят обычно микропрепараты из порошка листьев, которые рассматривают без включающей жидкости. Наиболее яркая люминесценция характерна для одревесневших элементов — сосудов жилки, механических волокон, а также для кутикулы и кутинизированных оболочек различных эпидермальных образований (волосков, железок и др.). В эпидермальных клетках часто содержатся флавоноиды, обусловливающие коричневую, желтую или зеленовато-желтую люминесценцию. Клетки мезофила содержат различные включения — желтые, голубые, зеленовато-желтые, коричневые — в зависимости от их химического состава. Хлорофилл в высушенном растительном материале не люминесцирует. Кристаллы оксалата кальция также не обладают люминесценцией.

При необходимости приготовления среза лист предварительно размягчают во влажной камере и с помощью бритвы делают толстый срез (2-3 мм), который закрепляют на предметном стекле пластилином. Более тонкие срезы помещают во включающую жидкость и накрывают покровным стеклом.

В качестве включающей жидкости используют воду, глицерин, поливинилового спирта раствор 5 %, нефлуоресцирующее вазелиновое масло.

Включающая жидкость не должна растворять содержащиеся в препарате люминесцирующие вещества.

Травы. При анализе трав готовят микропрепараты листьев. При необходимости приготовления препарата стебля его размягчают во влажной камере и готовят срезы. Толстые срезы (2 — 3 мм) закрепляют на предметном стекле с помощью пластилина и рассматривают без включающей жидкости, тонкие — помещают в подходящую жидкость и накрывают покровным стеклом. Наиболее яркую люминесценцию имеют одревесневшие элементы проводящих пучков — сосуды и механические волокна, склеренхимные клетки, встречающиеся в коре и сердцевине стебля. В клетках эпидермиса и коры часто встречаются флавоноиды; у некоторых видов сырья в клетках обкладки, вокруг проводящих пучков, содержатся алкалоиды, которые обладают разнообразным свечением: синим, голубым, зеленым, зеленовато-желтым, золотисто-желтым, оранжево-красным в зависимости от состава.

Цветки. Чаще готовят микропрепараты из порошка цветков или отдельных частей цветка (соцветия), которые рассматривают обычно без включающей жидкости. В цветках часто содержатся флавоноиды, каротиноиды и другие вещества, имеющие флуоресценцию. Отчетливо видны пыльцевые зерна, имеющие желтое, зеленовато-желтое или голубоватое свечение.

Плоды. Готовят обычно поперечные срезы плода после предварительного размягчения во влажной камере и рассматривают во включающей жидкости или без нее в зависимости от толщины среза. Для плодов характерна люминесценция тканей околоплодника (экзокарпия, механических клеток мезокарпия, проводящих пучков). Отчетливо видны секреторные каналы — ярко светится их содержимое; клетки выстилающего слоя обычно имеют желтовато-коричневую люминесценцию. В содержимом каналов нередко видны ярко люминесцирующие кристаллические включения, чаще всего желтого или желто-зеленого цвета.

Семена. Готовят обычно поперечные срезы семени после предварительного размягчения во влажной камере и рассматривают их во включающей жидкости или без нее в зависимости от толщины среза. Обращают внимание на характер люминесценции семенной кожуры, в которой отчетливо выделяются склеренхимные слои. Клетки эпидермиса, содержащие слизь, обычно имеют сине-голубое свечение. Эндосперм и ткани зародыша, богатые жирным маслом, характеризуются голубой люминесценцией.

Кора. Кору предварительно размягчают во влажной камере, готовят толстые поперечные срезы (до 3 — 5 мм), которые закрепляют на предметном стекле пластилином, и рассматривают без включающей жидкости; тонкие срезы заключают в жидкость. Для некоторых видов сырья характерна люминесценция пробкового слоя коры: оболочки клеток пробки светятся интенсивно синим, их содержимое — темно-красным (антоцианы). Яркое и разнообразное свечение имеют механические элементы (лубяные волокна и каменистые клетки): голубое, зеленовато-голубое, желтовато-зеленое. Люминесценция паренхимы коры зависит от химического состава. Антрацен-производные обусловливают яркое оранжевое или огненно-оранжевое свечение. Дубильные вещества обладают свойством «тушить» люминесценцию, поэтому ткани, содержащие дубильные вещества, темно-коричневого, почти черного цвета.

Препарат, приготовленный из порошка коры или соскоба, рассматривают без включающей жидкости. В нем наиболее ярко видны механические элементы.

Почки. Микропрепараты готовят из цельных почек, рассматривая их с поверхности на поперечных и продольных срезах. Поперечные срезы следует делать в средней, т.е. медиальной части почки, определяя место среза по длине почки. При необходимости выполняют поперечный срез в базальной части почки и/или радиальное продольное сечение.

Качественные микрохимические и гистохимические реакции проводят на поперечных и продольных срезах, препаратах поверхности кроющих чешуй с целью обнаружения кутикулы, эфирного масла, слизи, смолистых веществ, лигнифицированных оболочек клеток.

Корни, корневища, луковицы, клубни, клубнелуковицы. Готовят поперечные срезы, распилы, микропрепараты порошка или соскоба. Срезы готовят из материала, предварительно размягченного во влажной камере, распилы (из толстых корней и корневищ) — из сухого материала с помощью тонкой пилы или фрезы. С помощью бритвы с поверхности распила снимают тонкий слой для удаления слоя клеток, покрытых пылью. Толстые срезы и распилы (до 3 — 5 мм) закрепляют на предметном стекле пластилином и рассматривают без включающей жидкости. Слой пробки у подземных органов обычно тусклый, почти черный. Ярко люминесцируют древесина (у корней и корневищ) и проводящие пучки, а также склеренхимные элементы.

Их свечение очень разнообразно: от буровато-зеленого, желто-зеленого до светло-голубого и интенсивно синего в зависимости от вида сырья. Еще более разнообразна люминесценция паренхимы тканей и различных секреторных образований (вместилищ, каналов, ходов, млечников, различных идиобластов), что определяется их химическим составом. В секреторных образованиях встречаются кристаллические включения кумаринов, алкалоидов, флавоноидов, обладающие яркой люминесценцией.

В микропрепаратах порошка видны отдельные сосуды, группы механических волокон, каменистые клетки, отдельные секреторные образования или их обрывки, ярко люминесцирующие клетки паренхимы, содержащие те или иные вещества.

Микропрепараты в люминесцентном микроскопе рассматривают в ультрафиолетовом свете, наблюдая первичную (собственную) люминесценцию.

желтовато серый порошок с запахом высушенных тканей, не растворим в воде, спирте, других растворителях.

Подлинность

При испытании подлинности устанавливают наличие белка и органически связанного йода.

1. минерализация прокаливанием со смесью для спекания (нитрат калия и карбонат натрия) , чтобы органически связанный йод перевести в ионогенное состояние. Образовавшийся йодид ион извлекают водой и открывают обычными аналитическими реакциями:

а) окисление хлорамином в кислой среде и извлечение выделившегося йода хлороформом. Йод извлекается хлороформом СН I 3 , окрашивая его в фиолетовый цвет.

2I - + Cl 2 → I 2 + 2Cl -

б) с раствором нитрата серебра в азотнокислой среде выпадает желтый осадок йодида серебра, не растворимый в растворе аммиака.

в) Более перспективным является использование для определение органически-связанного йода методом сжигания в колбе с кислородом. В качестве поглощающей жидкости используют 0,5% раствор крахмала + 0,2% сульфаминовой кислоты. Сульфаминовая кислота связывает нитриты, образующиеся при горении белка:

Йод окрашивает крахмал в синий цвет.

2.Обнаружение белка – по образованию желтого окрашивания при кипячении препарата в растворе гидроксида натрия. При последующем добавлении разведенной серной кислоты раствор обесцвечивается и выпадает белый коллоидный осадок (коагуляция белков).

Чистота

1.йодиды (недопустимые примеси) – препарат без предварительной минерализации не должен давать реакции на йодиды. К фильтрату добавляют раствор крахмала, нитрит натрия и разв серную кислоту:

Не должно быть синего окрашивания крахмала.

2. Жира не более 2% (экстракция эфиром и определение сухого остатка).

3. Тяжелые металлы (недопустимые примеси)

Количественное определение

Метод йодометрии после окислительной минерализации – определение количества ковалентно связанного йода:

По ГФ Х

    окислительную минерализацию проводят добавлением пергидроля в смеси с конц серной кислотой . При этом образуются йодиды и частично идет реакция окисления до йодатов (йодновавтая кислота)

    для полного перехода йодоводородной кислоты HI в йодноватую кислоту добавляют перманганат калия в среде конц серной кислоты:

Параллельно убирается избыток пероксида водорода

    Удаление избытка перманганата калия нитритом натрия :

    разрушение (удаление) избытка нитрита натрия мочевиной до полного выделения газов:

    После удаления окислителей в растворе остается только йодноватая кислота в количестве, эквивалентном содержанию йода в навеске тиреоидина. Йодноватую кислоту определют йодометрически после добавления калия йодида. Выделившийся йод титруют тиосульфатом натрия. Индикатор – крахмал.

Современная ФС

1.Окислительная минерализация методом сжигания в колбе с кислородом. Поглощающая жидкость – раствор гидроксида натрия (образуется йодид и гипойодит натрия).

R-I + O 2 → I 2 + CO 2 + H 2 O

I 2 + 2NaOH → NaI + NaIO + H 2 O

NaI + NaIO + 5Br 2 + 5H 2 O → 2NaIO 3 +10HBr

© 2024 diskont-tehnika.ru - Ваша идеальная кухня