Импульсный источник тока для светодиодов. В чем отличие блока питания от драйвера для светодиодов: теория и практика, всё что нужно знать. Простейшая схема подключения светодиода

Импульсный источник тока для светодиодов. В чем отличие блока питания от драйвера для светодиодов: теория и практика, всё что нужно знать. Простейшая схема подключения светодиода

Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.

После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.

В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.

Зачем нужны преобразователи

Все дело в том, что прямое падение напряжения на , как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой .

Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать : многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.

Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.

В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной . Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.

Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.

Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.

Если под рукой не окажется транзистора структуры n-p-n, то можно применить , например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.

Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.

Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.

Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.

Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521 ().

Преобразователи с дросселем

Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1 , содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.

При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.

Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.

При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.

Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.

Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.

Схемы с обратной связью по току

А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.

В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.

При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.

Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.

Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.

При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.

Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.

Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.

Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.

Интегральные стабилизаторы тока

В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.

На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.

Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.

Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.

Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.

В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.

При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.

Борис Аладышкин

Светодиоды в целом, и, в частности, мощные (более 1 Вт) светодиоды очень чувствительны к различным внешним факторам, которые могут негативно сказаться на их сроке службы и качественных показателях. В настоящее время величины максимальных питающих токов для светодиодов имеют весьма ощутимые значения: до 1…1,5 и даже до 2 А по сравнению с 0,35 А, на которые чаще всего нормируются характеристики светодиода. Желание получить максимальный световой поток с одного полупроводникового излучателя ведет к увеличению тока, пропускаемого через него, что отражается на его тепловыделении, и вся конструкция (светодиод + светодиодная арматура) работает на грани перегрева кристалла. При этом к источнику питания предъявляются высокие требования по стабильности выходных характеристик, которые он должен обеспечить. Это является довольно проблематичным при использовании для питания источника напряжения. Во-первых, предварительное выравнивание тока в цепи светодиодов потребует, по крайней мере, дополнительного резистора, который будет ограничивать ток и в то же время рассеивать на себе дополнительную мощность. Во-вторых, любая осветительная установка работает в некотором диапазоне температур, часто довольно широком, а светодиод, обладая отрицательной зависимостью прямого падения напряжения от температуры кристалла — обычно на уровне -2…-4 мВ/°С, будет иметь плавающую рабочую точку. В-третьих, свой вклад будет вносить нестабильность выходных характеристик самого источника. Эти причины изрядно сократят жизнь современному источнику света, особенно в случае его работы на токах, близких к максимальным. Так, повышение напряжения на переходе всего на 0,1 В будет причиной изменения силы тока на 200 мА, что приведет к повышенному тепловыделению и может крайне негативно сказаться на работе светового прибора.

ВАХ на рисунке 1 показывает, насколько важно использование блока питания (БП) с регулированием по току, а не по напряжению. Повышение напряжения питания на светодиоде на 3% (0,1 В) приводит к росту тока в первом приближении на 20% (200 мА). Соответственно, на 40% растет потребляемая мощность и тепловая отдача, что неизбежно приведет к перегреву, деградации структуры кристалла и выходу из строя светодиода. При кратковременном сильном превышении питающего светодиод тока может начаться деградация кристалла диода, за которой также последует выход из строя.

Рис. 1.

Понижение напряжения на диоде также нежелательно, так как при его падении на 3% от номинального, что соответствуют падению тока на 200 мА, мы теряем более 50% светового потока, что видно из зависимости относительного потока светодиода от питающего тока (рис. 2).

Рис. 2.

Самым простым способом обеспечить необходимый ток питания светодиода является применение высокочастотных (десятки кГц) широтно-импульсных преобразователей (ШИМ), способных поддерживать необходимый средний ток в широком диапазоне мощностей подключенного оборудования. В обиходе светотехников и электриков такие БП часто называют светодиодными драйверами. Некоторые модели в выходной цепи преобразуют чистый ШИМ-сигнал (прямоугольные импульсы) в более сглаженную кривую, среднее значение которой находится на уровне желаемого среднего тока.

Высокая частота работы блока питания обусловлена, прежде всего, требованиями к отсутствию видимых пульсаций источников света. Особенностью конструкции ШИМ-схем является также то, что существует запас для понижения сетевого напряжения, при котором световой поток оборудования не снижается, но уменьшается частота пульсаций выходного сигнала, особенно сильно проявляющаяся при работе БП на нагрузках, близких к максимально допустимым. К примеру, блоки питания компании Inventronics могут работать в диапазоне действующих значений напряжения сети питания от 90 до 305 В, при этом частота пульсаций выходного сигнала все еще значительно превышает порог, при котором мигание светодиода может быть заметным, т.е. явление фликера (мигания источника света согласно ГОСТ 13109-97) сводится к нулю. Таким образом, ШИМ-блоки питания могут быть рекомендованы для использования в осветительном оборудовании на расстоянии от региональных центров на территории России, где напряжения в сети может быть ощутимо ниже стандартных (действующее значение напряжения в сети может падать до 150 В и менее в регионах, удаленных от крупных электростанций), а кратковременные перенапряжения, вызванные подключением мощных удаленных потребителей, могут достигать 260 В и более.

Другой особенностью использования БП с ШИМ является простота интеграции с управляемыми диммерами. При этом БП могут получать информацию о степени ослабления светового потока по каналам 1…10 В, DMX, DALI или другим протоколам. Также нельзя не упомянуть малые габаритные размеры ШИМ-блока питания, позволяющие минимизировать размеры корпуса ОП с интегрированным БП или упростить установку внешнего блока питания недалеко от светильника.

Есть и другой подход к исполнению блоков питания: для упрощения адаптации к существующим сетям, минимизации объема БП внутри светильников и организации низковольтной сети по принципам электробезопасности используются отдельный низковольтный источник напряжения (12 или 24 В) за пределами корпуса осветительного прибора (ОП) и малогабаритный ШИМ-преобразователь внутри светильника. Несмотря на кажущуюся простоту, при таком подходе можно столкнуться с рядом серьезных опасностей при монтаже. В частности, при ошибке в полярности подключения ШИМ-преобразователь сразу выходит из строя.

Очень важным параметром любого импульсного блока питания является величина гармонических и нелинейных искажений формы питающего напряжения, которые он создает в сети. Они отрицательно сказываются на проводке электросети и потребителях, подключенных к ней. Это влияние выражается не только в различных помехах, которые сказываются на чувствительных электроприборах, но также и в самой трехфазной сети, в нулевом проводнике которой могут протекать токи, превышающие токи в фазных проводниках. Причина состоит в том, что импульсный БП потребляет из сети мощность лишь на пиках питающего напряжения; потребляемый ток имеет форму небольшого импульса и содержит в себе широкий набор гармонических составляющих. В случае симметричной нагрузки в нулевом проводнике высшие гармоники тока компенсируют друг друга (сдвиг фаз относительно друг друга составляет 120°), но это не относится к высшим гармоникам, кратным трем, которые в нулевом проводнике окажутся сложенными.

Коэффициент мощности l — комплексный показатель искажения потребляемой из сети мощности, который учитывает не только сдвиг фазы, но и искажение формы потребляемого тока (наличие гармонических составляющих). ГОСТ Р 51317.3.2-2006 устанавливает нормы гармонических составляющих тока для ТС класса С (таблица 1).

Таблица 1. Нормы гармонических составляющих тока для ТС класса С

Порядок гармонической
составляющей, n
Максимальное допустимое значение гармонической составляющей тока, % основной гармонической составляющей потребляемого тока
2 2
3 30 l *
5 10
7 7
9 5
11≤n≤39 (только для нечетных гармонических составляющих) 3
* Коэффициент мощности цепи

При этом данные нормы устанавливаются для световых приборов с активной потребляемой мощностью более 25 Вт, однако следует полагать, что распространение энергоэффективных маломощных светодиодных светильников заставит существенно снизить эту планку или вовсе отменить ограничение.

Для минимизации вносимых в сеть искажений применяют устройства, компенсирующие вышеуказанные помехи и приближающие коэффициент мощности к единице. В то время как для приборов с фиксированной потребляемой мощностью применяют пассивные компенсационные конденсаторы (например, в ПРА для металл-галогенных или люминесцентных ламп), в импульсные БП интегрируют активные компенсационные устройства, максимально приближающие их характеристики к резистивным в широком диапазоне подключенных нагрузок.

Несоблюдение этих норм негативно сказывается как на качестве питающей электроэнергии, так и на работе устройств и состоянии инфраструктуры. Предприятия, превышающие эти нормы, облагаются штрафами и вынуждены устанавливать дополнительные конденсаторные установки. Однако потребление электрической энергии предприятием в большой степени прогнозируемо, что и позволяет обойтись пассивной коррекцией.

Блоки питания на ШИМ с компенсаторами вносят крайне малые искажения в сеть. Например, серия мощных БП EUC (рис. 3) от Inventronics обеспечивает значение коэффициента мощности в пределах 0,97…0,99.

Рис. 3.

КПД современных блоков питания с широтно-импульсными модуляторами достигает величины 92% и более, что немаловажно, т.к. затрачиваемая ими энергия уходит в нагрев. Соответственно, чем выше КПД, тем меньше требуется эффективная площадь рассеяния радиатора и, соответственно, тем меньше будут габариты и масса БП, за которыми, безусловно, следует снижение стоимости драйвера.

В настоящее время БП производятся с корпусами в различном исполнении: как для установки внутрь СП, встройки в мебель или размещения в помещениях, так и во влагозащищенных корпусах с различными показателями пылевлагозащиты (IP): от IP23, допустимых к установке в сухих помещениях, и IP54 для установки во влажных помещениях и под навесом, до влагозащищенных с корпусами IP67, подходящих для установки снаружи помещений. Малораспространенная группа БП с IP68 предназначена для установки в грунт без дополнительных корпусов.

Цветовые характеристики светодиода также могут отклоняться при изменении тока питания. Например, диаграмма зависимости цветовых координат от рабочего тока мощного светодиода Osram Dragon plus (рис. 4) показывает относительное смещение цветовых координат излучения.

Рис. 4.

В первую очередь это относится к световым приборам с возможностью управления и создания различных цветодинамических сцен. Так при использовании световым прибором большого диапазона рабочих токов цветовые координаты в пространстве могут смещаться на 0,01 единиц по оси x и на 0,015 единиц по оси y. Это смещение в холодном белом диапазоне может достигать несколько сотен Кельвин (до 700К). Но в повседневных применениях этот фактор практически не заметен. Влияние изменения величины питающего тока исчезает в случае питания светодиодов ШИМ-сигналом, а управление можно осуществлять изменением скважности сигнала.

Заключение

На рынке появился большой объем светодиодной продукции, оснащенной качественными БП и самыми различными видами оптики. Большая их часть производится с использованием мощных светодиодов. Ряд приборов ведущих мировых производителей можно уже считать проверенными временем, так как они не первый год успешно и безотказно работают на самых различных объектах в России и за рубежом.

Получение технической информации, заказ образцов, поставка — e-mail:

Сегодня в продаже можно увидеть множество различных типов источников питания для светодиодов. Данная статья призвана облегчить выбор нужного вам источника.

Прежде всего, рассмотрим различие стандарного блока питания и драйвера для светодиодов . Для начала нужно определиться - что такое блок питания? В общем случае это - источник питания любого типа, представляющий собой отдельный функциональный блок. Обычно он имеет определенные входные и выходные параметры, причем неважно - для питания каких именно устройств предназначен. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Другими словами - это тоже блок питания. Драйвер - это лишь маркетинговое обозначение - дабы избежать путаницы. До появления светодиодов источники тока - а им и является драйвер, не имели широкого распространения. Но вот появился сверхяркий светодиод - и разработка источников тока пошла семимильными шагами. А чтобы не путаться - их называют драйверами. Итак, давайте договоримся о некоторых терминах. Блок питания - это источник напряжения (constant voltage), Драйвер - источник тока (constant current). Нагрузка - то, что мы подключаем к блоку питания или драйверу.

Блок питания

Большинство электроприборов и компонентов электроники требуют для своей работы источник напряжения. Им является обычная электрическая сеть, которая присутствует в любой квартире в виде розетки. Всем известно словосочетание "220 вольт". Как видите - ни слова о токе. Это означает, что если прибор рассчитан на работу от сети 220 В, то вам неважно - сколько тока он потребляет. Лишь бы было 220 - а ток он возьмет сам - столько, сколько ему нужно. К примеру, обычный электрический чайник мощностью 2 кВт (2 000 Вт), включенный в сеть 220 в, потребляет следующий ток: 2 000 / 220 = 9 ампер. Довольно много, учитывая, что большинство обычных электрических удлинителей рассчитано на 10 ампер. В этом причина частого срабатывания защиты (автомата) при включении чайников в розетку через удлинитель, в который и так вставлено много приборов - компьютер, например. И хорошо, если защита сработает, в противном случае удлинитель может просто расплавиться. И так - любой прибор, рассчитанный на включение в розетку - зная, какова его мощность, можно вычислить потребляемый ток.
Но большинство бытовых устройств, таких как телевизор, DVD-проигрыватель, компьютер, нуждаются в понижении сетевого напряжения с 220 В до нужного им уровня - например, 12 вольт. Блок питания - это как раз то устройство, которое занимается таким понижением.
Понизить напряжение сети можно разными способами. Самые распостраненные блоки питания - трансформаторный и импульсный.

Блок питания на основе трансформатора

В основе такого блока питания лежит большая, железная, гудящая штуковина.:) Ну, нынешние трансформаторы гудят поменьше. Основное достоинство - простота и относительная безопасность таких блоков. Они содержат минимум деталей, но при этом обладают неплохими характеристиками. Основной минус - КПД и габариты. Чем больше мощность блока питания - тем он тяжелее. Часть энергии расходуется на "гудение" и нагрев:) Кроме того, в самом трансформаторе теряется часть энергии. Другими словами - просто, надежно, но имеет большой вес и много потребляет - КПД на уровне 50-70%. Имеет важный неотъемлемый плюс - гальваническую развязку от сети. Это означает, что если произойдет неисправность или вы случайно залезете рукой во вторичную цепь питания - током вас не стукнет:) Еще один несомненный плюс - блок питания может быть включен в сеть без нагрузки - это ему не повредит.
Но давайте посмотрим, что будет, если перегрузить такой блок питания .
Имеется: трансформаторный блок питания с выходным напряжением 12 вольт и мощностью 10 ватт. Подключим к нему лампочку 12 вольт 5 ватт. Лампочка будет светиться на все свои 5 ватт и потреблять тока 5 / 12 = 0,42 А.



Подключим вторую лампочку последовательно к первой, вот так:



Обе лампочки будут светиться, но очень тускло. При последовательном соединении ток в цепи останется тем же - 0,42 А, а вот напряжение распределится между двумя лампочками, то есть каждая получит по 6 вольт. Понятно, что светиться они будут еле-еле. Да и потреблять при этом будут каждая примерно по 2,5 Вт.
Теперь изменим условия - подключим лампочки параллельно:



В итоге напряжение на каждой лампе будет одинаковое - 12 вольт, а вот тока они возьмут каждая по 0,42 А. То есть ток в цепи возрастет в два раза. Учитывая, что блок у нас мощностью 10 Вт - мало ему уже не покажется - при параллельном включении мощность нагрузки, то есть лампочек, суммируется. Если мы еще и третью подключим - то блок питания начнет дико греться и в конце концов сгорит, возможно, прихватив с собой вашу квартиру. А все это потому, что он не умеет ограничивать ток. Поэтому очень важно правильно рассчитать нагрузку на блок питания. Конечно, блоки посложнее содержат защиту от перегрузки и автоматически отключаются. Но рассчитывать на это не стоит - защита, бывает, тоже не срабатывает.

Импульсный блок питания

Самый простой и яркий представитель - китайский блок питания для галогеновых ламп 12 В. Содержит небольшое количество деталей, легкий, маленький. Размеры 150 Вт блока - 100х50х50 мм, вес грамм 100. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для галогенных ламп тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока тоже не на высоте - порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе - для ноутбуков, принтеров и т.п. Итак, основное достоинство - небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток - тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки:) Так что если вы решили сделать у себя дома освещение на 12 В галогенных лампах - подсчитайте допустимую нагрузку на каждый трансформатор.
Желательно создавать от 20 до 30% запаса. То есть если у вас трансформатор на 150 Вт - лучше не вешайте на него больше, чем 100 Вт нагрузки. И внимательно следите за равшанами, если они делают у вас ремонт. Расчет мощности им доверять не стоит. Также стоит отметить, что импульсные блоки не любят включения без нагрузки . Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу - обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше - устройства сами решают - сколько тока им нужно.

Драйвер

В общем случае драйвер - это источник тока для светодиодов . Для него обычно не бывает параметра "выходное напряжение". Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение - делим мощность в ваттах на ток в амперах.
На практике это означает следующее. Допустим, параметры драйвера следующие: ток - 300 миллиампер, мощность - 3 ватта. Делим 3 на 0,3 - получаем 10 вольт. Это максимальное выходное напряжение, которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет 3 вольта, а ток 300 мА. Подключим второй диод последовательно (см. пример с лампами выше) с первым - на выходе будет 6 вольт 300 мА, подключим третий - 9 вольт 300 мА. Если же мы подключим светодиоды параллельно - то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА - они будут получать только 300 мА.
Надеюсь, принцип понятен. Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан - как бы вы не подключали диоды. Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество - 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают - можно подключить пять диодов или даже четыре. КПД универсальных драйверов хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем. Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три - вполне возможно, что защита сработает и диоды либо не включатся либо будут мигать, сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки - этим они сильно отличаются от обычного источника напряжения.

Итак, разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

Это простейший драйвер для светодиода. Выглядит как бочонок с двумя выводами. Резистором можно ограничить ток в цепи, подобрав нужное сопротивление. Как это сделать - подробно описано в статье "Подключение светодиодов в авто"
Недостаток - низкий КПД, отсутствие гальванической развязки. Способов надежно запитать светодиод от сети 220 В через резистор не существует, хотя во многих бытовых выключателях подобная схема используется.

Конденсаторная схема.

Сходна со схемой на резисторе. Недостатки те же. Возможно изготовить конденсаторную схему достаточной надежности, но при этом стоимость и сложность схемы сильно возрастут.

Микросхема LM317

Это следующий представитель семейства простейших драйверов для светодиодов . Подробности - в вышеупомянутой статье о светодиодах в авто. Недостаток - низкий КПД, требуется первичный источник питания. Преимущество - надежность, простота схемы.

Драйвер на микросхеме типа HV9910

Данный тип драйверов получил изрядную популярность благодаря простоте схемы, дешевизне комплектующих и небольших габаритах.
Преимущество - универсальность, доступность. Недостаток - требует квалификации и осторожности при сборке. Отсутствует гальваническая развязка с сетью 220 В. Высокие импульсные помехи в сеть. Низкий коэффициент мощности.

Драйвер с низковольтным входом

В эту категорию входят драйверы, рассчитанные на подключение к первичному источнику напряжения - блоку питания или аккумулятору. Например, это драйверы для светодиодных фонарей или ламп, предназначенных для замены галогенных 12 В. Преимущество - небольшие габариты и вес, высокий КПД, надежность, безопасность при эксплуатации. Недостаток - требуется первичный источник напряжения.

Сетевой драйвер

Полностью готовы к использованию и содержат все необходимые элементы для питания светодиодов. Преимущество - высокий КПД, надежность, наличие гальванической развязки, безопасность при эксплуатации. Недостаток - высокая стоимость, труднодоступны для приобретения. Могут быть как в корпусе, так и без корпуса. Последние обычно применяют в составе ламп или других источников света.

Применение драйверов на практике

Большинство людей, планирующих использовать светодиоды , совершают типичную ошибку. Сначала приобретаются сами СИД , затем под них подбирается драйвер . Ошибкой это можно считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову - как подобрать драйвер из имеющегося в наличии. Вот купили вы 10 светодиодов - а драйвера только на 9 есть. И приходится ломать голову - как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов. Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт. А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт "потянет" 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так:

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА? Тогда придется использовать четное количество светодиодов , включая их по два параллельно.

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов - 350 мА. Это не так, 350 мА - это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения - ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток - тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер - это почти 100 ватт. Такие блоки недешевы.
Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями:)

Юрий Рубан, ООО "Рубикон", 2010 г .

Осветительные приборы, в которых стоит обычный светодиод, сравнительно недавно стали использоваться для создания искусственного декоративного освещения помещений. Это новое направление зарекомендовало себя, как очень перспективное, широко использующееся не только в интерьерах, но также и для яркой эффектной подсветки архитектурных и ландшафтных объектов. Для того, чтобы потребление энергии было минимальным, а светоотдача максимальной, рекомендуется использовать мощные светодиоды, купить которые в Москве предлагает наша компания.

Какие источники тока стоит купить для мощных светодиодов

Для того, чтобы мощный светодиод работал стабильно и без перебоев, необходимо обеспечить его постоянным питанием через источник тока, которые еще называют драйверами. Устройства предназначены для питания светодиодных цепей и модулей с высоким значением мощности, и работают под постоянной высокой нагрузкой. Источники тока для мощных светодиодов уменьшают значение тока в электросети до заданного значения, тем самым обеспечивается бесперебойное освещение, безопасность эксплуатации и долгий срок использования всей системы.

Источник тока для мощных светодиодов – простой, обычный и небольшой по габаритам прибор, который необходим для того, чтобы обеспечить питание электронных приборов, для которых характерна работа на постоянном токе. Эти устройства поддерживают определенное значение выходного тока и мощности. Источники тока нужны для обеспечения бесперебойной работы мощных светодиодов, прожекторов модулей.

Для источников тока для мощных светодиодных устройств и модулей характерно стабилизированное значение тока на выходе. Источники работают в мощных мультикристальных светодиодных системах, с большими значениями мощности.

Как выбрать и купить источники тока для мощных светодиодов

Блоки питания для светодиодных источников освещения высокой мощности выбираются исходя из определенных параметров:

  • Значение тока на выходе. Источник тока на выходе имеет определенное значение тока, которое является постоянным и не изменяется в процессе эксплуатации. Драйвер может работать и при токе, отличном от допустимого. Если ток будет меньше номинального, то освещение будет не очень ярким. Если же значение тока на выходе будет больше, чем допустимое, то в этом случае освещение будет очень ярким, но оборудование будет перегреваться, за счет чего срок эксплуатации устройства значительно сократится. Именно поэтому не стоит превышать допустимое значение тока на выходе.
  • Максимальное значение мощности на выходе. Оно показывает максимальную нагрузку, которую может выдержать драйвер. Однако не стоит нагружать его до верхнего предельного значения, так как в этом случае высока вероятность перегрева устройства, из-за чего снизится срок эксплуатации.

На сегодняшний день у нас можно найти большой ассортимент драйверов для мощных светодиодов. Во всех этих устройствах значение тока не меняется, изменяется лишь значение напряжения на выходе в зависимости от подключаемой нагрузки. Корпус источника тока для мощных светодиодов может быть выполнен из пластика или алюминия.

Все источники тока, которые купить предлагает наша компании, можно классифицировать по принципу исполнения корпуса:

  • Герметичные. Их применяют для работы на открытой местности или в помещениях с повышенным уровнем влажности и пыли.
  • Негерметичные. Они предназначены для работы в сухих закрытых помещениях.

В настоящее время у нас представлено большой ассортимент различных источников тока. Существуют универсальные драйвера, которые рассчитаны на неопределенное число светодиодов, главное, чтобы мощность источника тока не превышала суммарную мощность всех подключенных светодиодов. Также можно найти источники тока, которые рассчитаны на определенное число диодов.


КПД универсальных источников тока для мощных светодиодов немного меньше, чем у обычных драйверов из-за особенностей их схемы. Источники тока с определенным числом диодов выполнены со встроенной защитой от перегрузок. Но если подключить к ним меньшее число диодов, то, вероятнее всего, защита сработает и система выдаст сообщение об аварии.

При эксплуатации драйвера следует соблюдать некоторые правила, чтобы система нормально работала на протяжении всего срока эксплуатации:

  • Подключение источника тока к питающему напряжению должно происходить непосредственно под нагрузкой.
  • Светодиоды, подключенные к источнику тока, должны иметь достаточное охлаждение, особенно если планируется использовать дополнительный ток.

В нашем магазине работают опытные консультанты, которые подскажут все необходимые параметры для Ваших потребностей, помогут правильно рассчитать мощность устройства для конкретного оборудования и определиться с выбором модели блока питания.

Имеется светодиодный светильник, состоящий из 50 штук последовательно включенных светодиодов GW PUSRA1.PM фирмы OSRAM. Рабочий ток светильника равен 700 мА. Светильник будет эксплуатироваться в диапазоне температур от -30 до +50 градусов Цельсия.

Необходимо: подобрать к этому светодиодному светильнику источник питания.

Смотрим характеристики светодиодов GW PUSRA1.PM, которые нам дает производитель:

Из документации видно, что типичное падение напряжения на одном светодиоде составляет 2.80 V при токе 700 mA.
Следовательно, типичное падение напряжения светодиодного светильника (последовательно включенных 50 светодиодах) составляет 2.80 X 50 = 140 V.

При производстве светодиодов существует важная проблема - повторяемость параметров. Самое высокотехнологичное производство не позволяет получить приборы с одинаковыми заданными рабочими параметрами.
Чтобы учесть это в расчетах, смотрим в технической документации, какое минимальное и максимальное падение напряжения на светодиоде при токе 700мА. Производитель указал максимальное падение напряжения: 3.20 V, минимальное: 2.70 V.
С учетом этих отклонений, расчетные падения напряжения на светодиодном светильнике будут:
минимальное: 2.70 x 50 = 135V
максимальное: 3.20 x 50 = 160V
Мы получили промежуточный рабочий диапазон падения напряжения светодиодного светильника 135…160 V при рабочем токе 700мА.

При расчете промежуточного рабочего диапазона падения напряжения, мы не учитывали диапазон рабочих температур светодиодного светильника. Этот диапазон определяется планируемыми климатическими условиями эксплуатации светодиодного светильника (от -30 до +50 градусов Цельсия).
Смотрим график зависимости падения напряжения на светодиоде от температуры:

Из графика видно, что чем ниже температура, тем больше падение напряжения на светодиоде.
Увеличение падения напряжения на светодиоде при -30 градусов относительно 85 градусов составит примерно 0,2 V
Увеличение падения напряжения на светодиоде при +50 градусов относительно 85 градусов составит примерно 0,05 V
Следовательно, падения напряжения на светодиодном светильнике с учетом температурного диапазона будут:

от (2,7 + 0,05) x 50 шт. = 137.5 V до (3,2 +0,2) x 50 шт. = 170 V

То есть, при типовом значении падения напряжения на светильнике 140 V расчетный диапазон падения напряжения составит: 137.5 … 170 V

Примечание: в реальном светильнике температура светодиодов из-за нагрева может превышать расчетные +50 градусов Цельсия. Строго говоря, это может привести к уменьшению падения напряжения на светодиодах и соответственно, небольшому уменьшению величины нижней границы диапазона напряжений светильника. Но так как мы используем данные расчеты для подбора источников питания - то позволим себе этой небольшой поправкой пренебречь, так как источник все равно нужно приобретать с приличным запасом по величине нижней и верхней границы выходного напряжения. Либо, если есть необходимость знать нижнюю границу совершенно точно - нужно производить практические замеры температуры светодиодов в реальном светильнике.

Обращаем внимание, что данный расчет велся для типичного тока этих светодиодов: 700 мА. Но вообще диапазон тока для этих светодиодов 200 … 1500 мА. То есть, при желании может быть выбран другой ток из этого диапазона. В этом случае, можно воспользоваться графиком:



Возвращаясь к нашему расчету для тока 700 мА, будем подбирать источник питания для светодиодного светильника.
Оценим максимальную мощность потребления светильника: 170 V x 0,7 A = 119 Вт
При выборе источника питания, фирма MEAN WELL рекомендует иметь запас по мощности примерно 30%. Следовательно, номинальная мощность источника составит величину около 150 Вт.

Выбираем модель ELG-150-C700.

Основные характеристики ELG-150-C700 представлены в таблице:


Как видно, источник ELG-150-C700 на выходе дает стабилизированный ток 700мА в диапазоне 107 … 214 V
Ток 700 мА совпадает с заданным током светодиодного светильника. Диапазон напряжений источника 107 … 214 V шире диапазона напряжений светодиодного светильника 137.5 … 170 V
Следовательно, совместно они должны работать нормально.
Проанализируем, как источник ведет себя в разных температурных режимах:

Видно, что в заданном диапазоне температур от -30 до +50 градусов Цельсия номинальная мощность источника не меняется и находится на уровне 100%.

Источник ELG-150-C700 к светильнику подобран.

© 2024 diskont-tehnika.ru - Ваша идеальная кухня